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DeXposure-FM: A Time-series, Graph Foundation Model for Credit
Exposures and Stability on Decentralized Financial Networks

Aijie Shu, Wenbin Wu, Gbenga Ibikunle, Fengxiang He

• Financial economics foundation model: We build DeXposure-FM, the
first time-series, graph foundation model for decentralized finance.

• Empirical verification on machine learning benchmarks: DeXposure-
FM significantly outperforms strong competitors in machine learning
benchmarks of multi-step forecasts of edge-level exposures and network-
level statistics, such as concentration, density, and sector-to-sector links.

• Financial economics tools: DeXposure-FM produces tools that sup-
port macroprudential monitoring and scenario-based DeFi stress test-
ing, by enabling protocol-level systemic-importance scores, sector-level
spillover, and concentration measures via a forecast-then-measure pipeline.

• Open-source efforts and reproducibility: Both model and code have
been publicly available. We will continue our open-source efforts in
future developments.
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Abstract

Credit exposure in Decentralized Finance (DeFi) is often implicit and token-
mediated, creating a dense web of inter-protocol dependencies. Thus, a shock
to one token may result in significant and uncontrolled contagion effects.
As the DeFi ecosystem becomes increasingly linked with traditional finan-
cial infrastructure through instruments, such as stablecoins, the risk posed
by this dynamic demands more powerful quantification tools. We intro-
duce DeXposure-FM, the first time-series, graph foundation model for mea-
suring and forecasting inter-protocol credit exposure on DeFi networks, to
the best of our knowledge. Employing a graph-tabular encoder, with pre-
trained weight initialization, and multiple task-specific heads, DeXposure-
FM is trained on the DeXposure dataset that has 43.7 million data entries,
across 4,300+ protocols on 602 blockchains, covering 24,300+ unique tokens.
The training is operationalized for credit-exposure forecasting, predicting the
joint dynamics of (1) protocol-level flows, and (2) the topology and weights
of credit-exposure links. The DeXposure-FM is empirically validated on two
machine learning benchmarks; it consistently outperforms the state-of-the-
art approaches, including a graph foundation model and temporal graph neu-
ral networks. DeXposure-FM further produces financial economics tools that
support macroprudential monitoring and scenario-based DeFi stress testing,
by enabling protocol-level systemic-importance scores, sector-level spillover
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and concentration measures via a forecast-then-measure pipeline. Empirical
verification fully supports our financial economics tools. The model and code
have been publicly available.
Model: https://huggingface.co/EVIEHub/DeXposure-FM.
Code: https://github.com/EVIEHub/DeXposure-FM.

Keywords: Time-Series Analysis, Graph Tabular Model, Foundation
Model, Credit Exposures, Financial Stability, Decentralized Finance,
Financial Networks

1. Introduction

Decentralized finance (DeFi) has emerged as an important and fast-
evolving financial ecosystem, offering lending, trading, derivatives, and payment-
like services via smart contracts deployed across multiple blockchains [39, 25].
A defining feature of DeFi is composability: protocols routinely hold, lock,
or accept tokens issued by other protocols as collateral, liquidity, or reserves.
As a result, credit exposure is often implicit and token-mediated rather than
expressed as bilateral contracts, creating a dynamic network of inter-protocol
dependencies [47, 9]. When a token that is widely used as collateral or liquid-
ity experiences a shock, through a price collapse, governance failure, exploit,
or liquidation event, losses can propagate to protocols that rely on that to-
ken, potentially generating amplification and contagion across chains [25, 5].
Policy authorities have highlighted the vulnerabilities of DeFi networks and
underscored persistent gaps in quantitative tools that limit effective monitor-
ing for the DeFi ecosystem [4]. This measurement gap is increasingly salient
as links between crypto markets and the broader financial system deepen
[21].

Despite the importance, empirical work has been constrained by limited
data and tools. DeFi exposures are not reported in standardized balance
sheets; they must be reconstructed from on-chain states and transactions.
Even when exposures can be estimated, they are (1) high-dimensional : there
are millions of potential directed links, (2) nonstationary, in terms of protocol
upgrades, new assets, changing incentives, and (3) strongly heteroskedastic:
regime shifts are frequent between calm and crisis. Classical time-series tools
such as vector autoregression (VAR) [41] and low-rank factor methods [42]
provide strong baselines, but they suffer from restricted capacity to represent
data features, and struggle to represent the coupled evolution of node-level
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states (e.g., total locked value in a protocol), edge-level exposures (e.g., who
is economically linked to whom, and with what weight), and meso-structure
(e.g., sectoral organization and its rewiring under stress). Meanwhile, mod-
ern graph neural networks (GNNs) [28, 44] and temporal graph models for
dynamic interaction data [38] have shown impressive performance in wide
areas; yet they are typically trained for a narrow task on a limited dataset,
rather than serving as reusable infrastructure across multiple tasks.

To address this gap, we train DeXposure-FM, the first time-series, graph
foundation model for measuring and forecasting inter-protocol credit expo-
sures in global decentralized financial networks, to the best of our knowledge.
The model is trained on more than 43.7 million weekly inter-protocol expo-
sure data entries from 2020-2025, stored in the DeXposure dataset, which
constructs credit exposures across over 4,300 protocols on 602 blockchains
and covers 24,300+ unique tokens [47]. DeXposure constructs inter-protocol
exposures by linking protocol-level balance-sheet proxies (e.g., total value
locked, TVL [4]) to token- and sector-level structure, enabling a unified view
of volumes, topology, and compositional risk. The dataset captures an evolv-
ing, weighted, directed multigraph whose nodes are protocols and whose
edges represent economically meaningful exposure links inferred from token
composition and valuation dynamics. DeXposure-FM follows the foundation-
model paradigm: it pretrains a general representation on large-scale data and
reuses it across diverse downstream tasks, a strategy that has proven effective
in wide areas [10].

DeXposure-FM employs a large-size graph-tabular encoder (GraphPFN
[20] in this paper) to extract representations from input data, followed by
multiple heads to forecast (1) edge existence and edge weights on the graph,
and (2) node-level TVL changes at multiple horizons. In optimization, the
encoder is initialized by open-source pre-trained weights, while the heads are
initialized randomly. Time-based walk-forward splits [8], early stopping [34],
and gradient clipping [33] are employed to improve robustness under non-
stationary environments. In training, DeXposure-FM is optimized by Adam
[27] for the joint tasks of (1) edge existence classification, (2) edge weight
regression, and (3) node-level TVL-change prediction. These outputs map
naturally to policy-relevant statistics: concentration, density, sector connec-
tivity, and directional spillovers. In crises, the relevant question is not only
“what is the expected TVL tomorrow?”, but “which parts of the network
amplify shocks, and along which pathways does distress travel?” as well.

We evaluate DeXposure-FM on two machine learning benchmarks, tai-
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lored for economic measurement and risk analytics: (1) multi-step forecasting
of edge-level exposures and network-level statistics (e.g., concentration, den-
sity, and sector connectivity), and (2) predictive stress testing, where we
forecast a future exposure network and compare simulated system losses on
predicted versus realized graphs under fixed counterfactual shock definitions.
Across tasks, we benchmark against strong competitors, including Graph-
PFN, ROLAND [49] (a temporal graph neural network), and a persistence
baseline that directly uses the current values as prediction.

DeXposure-FM provides a range of financial economics tools for macro-
prudential monitoring in decentralized financial infrastructure. We use the
trained model to construct dynamic measures of protocol-level systemic im-
portance, sector level spillover, and early-warning indicators based on shifts
in network concentration and dependence on fragile collateral. These model-
based measurements support DeFi-specific stress testing under counterfac-
tual shocks. These tools are all validated in experiments. As the first time-
series, graph foundation model for measuring and forecasting inter-protocol
credit exposure on DeFi networks, DeXposure-FM advances the measure-
ment toolkit needed to understand systemic risk in DeFi and its interaction
with the wider financial system.

DeXposure-FM will be continuously updated and extended along five
directions: (1) enlarging the training data pool; (2) improving exposure
measurement by moving beyond raw TVL; (3) addressing the continuous
model drift through periodic retraining on new data, drift monitoring by
sector/chain, and versioned releases tied to specific data vintages; (4) in-
novating the architecture; and (5) fostering an open-source community by
maintaining public code and model weights, running competitions, etc.

2. Related Works

This section reviews the literature in relevant areas.

2.1. Credit Risk Modeling in Financial Markets
In traditional finance, credit risk modeling spans both individual-default

models and systemic network approaches. Classical structural models and
reduced-form models quantify default probabilities of single entities, while
network contagion models examine how defaults propagate through finan-
cial institutions. For example, Dolfin et al. apply network epidemic models
to credit contagion, highlighting how interconnected portfolios can amplify
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systemic credit risk [18]. In decentralized finance, credit risk manifests dif-
ferently, as loans are typically over-collateralized and mediated by smart
contracts. Bertomeu et al. propose simple aggregate risk measures for DeFi
lending protocols, using only total deposits and borrowings, and report that
systemic fragility surged around mid-2021 during crypto market turmoil [9].
Conceptual studies have begun to map TradFi and DeFi risks together: Au-
fiero et al. review systemic risk mechanisms, finding that while basic risk
types (leverage, liquidity shocks, correlated exposures) are common to both
systems, DeFi’s algorithmic execution and composability lead to unique prop-
agation channels [5].

2.2. Machine Learning for Systemic Risk, Contagion, and Network Analysis
Machine learning techniques are increasingly applied to systemic risk de-

tection and contagion modeling [6, 26]. Graph neural networks (GNNs) in
particular leverage network structure to improve risk prediction [28, 44]. Bal-
maseda et al. show that a GNN-based model dramatically outperforms tradi-
tional ML for classifying systemic importance of banks in simulated networks
[6]. Gonon et al. integrate GNNs with explicit interbank liability networks,
computing systemic risk measures as the minimum capital needed to secure
the system [26]. Their framework effectively learns contagion channels (e.g.,
Eisenberg-Noe clearing) by incorporating graph-structured data into the risk
aggregation function.

2.3. Foundation Models in Finance and Economics
Foundation models are increasingly penetrating into financial and eco-

nomic domains by shifting the workflow from task-specific tools toward reusable
representations learned from broad data. Instead of fitting a separate model
for each target, recent approaches pretrain large neural networks, mostly us-
ing an architecture of transformer [43] and its variants, on massive data; and
then transfer the pre-trained model across domains and tasks via prompt-
ing or light adaptation [2, 36, 14]. In parallel, an emerging policy-facing
literature uses large language models to extract quantitative signals from
narrative text (e.g., reports, releases, and news) and incorporate them into
nowcasting pipelines, suggesting that relatively small but information-dense
text sources can improve real-time prediction when combined with standard
indicators [11, 30, 13]. These models are also adapted to graph inputs, which
augment self-attention with graph structural encodings, demonstrating the
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feasibility of large pretrained models on networks that resemble webs of fi-
nancial contracts or cross-asset relationships; a good example is Graphormer
[48]. For tabular data, the Graph Prior-data Fitted Network (GraphPFN)
[20] is pretrained on millions of synthetic tabular tasks and reports strong
out-of-the-box performance on diverse benchmarks.

3. Formalizing Credit-Exposures on Decentralized Financial Net-
works

This section formally defines terminologies and notations.

3.1. Credit Exposure in DeFi Networks
Let XG(q) denote the set of all tokens issued or generated by protocol q,

and let Xp(t) denote the set of tokens held (or locked) by protocol p at time
t. We call that protocol p has credit exposure to protocol q at time t if the
tokens it holds include at least one that was issued by q:

Xp(t) ∩XG(q) ̸= ∅. (1)

In other words, p holds a liability of q; if the tokens issued by q lose value
or become illiquid, then p faces a corresponding loss. This token-mediated
dependence generalizes the notion of counterparty credit risk in traditional
finance to decentralized platforms, where exposures arise not from explicit
bilateral contracts but from the possession of tokenized claims. The dynamics
of these relationships can be measured by reconstructed total value locked
(TVL) time series for each protocol and tracking how the composition of
tokens held by each protocol evolves over time [47].

Figure 1 illustrates how a single-user transaction creates a multi-layer
chain of credit exposures in DeFi. A user deposits ETH into Lido, a liquid
staking protocol, and receives stETH, a rebasing token that accrues staking
rewards. The stETH is then wrapped into wstETH, a non-rebasing repre-
sentation that is more compatible with DeFi protocols. Finally, wstETH is
deposited into Pendle, a yield-tokenization protocol that splits the asset into
a principal token PT-wstETH and a yield token YT-wstETH, allowing users
to trade fixed and variable yield separately.

In balance-sheet terms, Lido holds staked ETH with validators and issues
stETH as liabilities, the wstETH wrapper holds stETH and issues wstETH,
and Pendle holds wstETH and issues the PT and YT pair. Because each
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protocol’s assets consist of tokens issued by the preceding protocol, a chain
of credit exposures emerges: Pendle has exposure to the wstETH wrapper,
which in turn has exposure to Lido. If Lido experienced a slashing event or
stETH de-pegged from ETH, the losses would cascade through wstETH and
into Pendle, affecting PT and YT holders. This example demonstrates that
DeFi exposures are inherently multi-layered, as liquid staking, wrapping, and
yield tokenization compound into complex dependency structures that the
DeXposure dataset aims to capture.

3.2. Mapping Tokens to Issuing Protocols
To operationalize eq. (1), we must determine which protocol issues each

token and thus identify the direction of exposure. Let P denote the set of
all protocols and C the set of blockchains. For each token σ appearing in
protocol p, a mapping function M(σ) returns the protocol q that issues or
manages σ. We can construct M using a fallback procedure:

1. Metadata lookup: Tokens are directly matched to issuing protocols us-
ing metadata from DefiLlama [16] when available.

2. Manual mapping: For tokens with high TVL that lack metadata links,
researchers manually assign the issuing protocol based on documenta-
tion and expert knowledge.

3. Text-vector similarity: For remaining tokens, the text descriptions of
tokens and protocols are vectorized via the term frequency–inverse doc-
ument frequency (TF-IDF) representation [40]. Cosine similarity scores
between token and protocol vectors determine the best match, and
tokens are mapped to the protocol with the highest similarity score
exceeding a threshold θ.

4. Primary market tokens: If none of the above methods yields a mapping,
the token is treated as its own protocol (e.g., WETH).

This mapping ensures that token flows between protocols can be attributed to
changes in credit exposure with respect to the correct issuing protocol, even
when tokens are bridged across chains or wrapped by multiple platforms.
This procedure was implemented to curate the DeXposure dataset.

3.3. Network Representation and Value Flows
Credit exposures over a discrete time interval τ = t2 − t1 are represented

by a weighted directed graph Gτ = (Pτ , Eτ ), where Pτ is the set of active
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protocols and Eτ is the set of directed edges. Each vertex p ∈ Pτ is assigned
a node weight equal to the value of assets it holds at the end of the interval:

wτ (p) =
∑

σ∈Xp(t1)∩Xp(t2)

vt2,σ, (2)

where vt2,σ is the USD value of token σ at time t2. Nodes with negligible
weight (below a threshold θ) can be pruned for clarity. To define the edge
weight from protocol p to protocol q, we first compute the value flow for each
token σ:

F σ
pq,τ =

{
max

(
0, −∆Sσ

p,τ

)
, if ∆Sσ

p,τ < 0,

max
(
0, ∆Sσ

q,τ

)
, if ∆Sσ

q,τ ≥ 0,
(3)

where ∆Sσ
p,τ = vσp,t2 − vσp,t1 is the change in the USD value of token σ held by

protocol p over the interval. Eq. (3) reflects the intuition that if p decreases
its holdings of σ and q increases theirs, then σ has flowed from p to q; negative
flows are reversed so that all flows are non-negative. The edge weight wτ (epq)
is the sum of flows for all tokens that map to the issuing protocol q:

wτ (epq) =
∑

σ∈Xpq,τ

F σ
pq,τ , (4)

where Xpq,τ denotes the set of tokens with issuing protocol q that move from
p to q over τ . A positive edge weight indicates increasing exposure from p to
q. For single-token protocols, the flow of that token equals the edge weight.

In summary, one aggregates token holdings at the start and end of the
interval, computes node weights, discards nodes below a threshold, and then
computes edge weights by summing positive flows; negative flows are reversed
to ensure all weights are non-negative. The resulting time-indexed sequence
of graphs captures the evolving structure of credit dependencies in the DeFi
ecosystem. The curation of the DeXposure dataset follows this setting.

4. DeXposure-FM: Architecture and Optimization

This section introduces the DeXposure-FM, including its architecture and
the training process.
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4.1. Model Architecture
DeXposure-FM is a time-series graph foundation model designed to fore-

cast the evolution of inter-protocol credit exposures. The architecture em-
ploys a graph-tabular encoder (GraphPFN in this case) to produce protocol
embeddings from the input weekly snapshots, followed by task heads that
process embeddings for tasks of (1) edge existence classification, (2) edge
weight regression, and (3) node-level TVL changes prediction. Network-level
statistics are then obtained by applying deterministic functionals to the pre-
dicted graph.

4.1.1. Input and Features
Let t ∈ T be discrete observation times and τ = (t1, t2) be a weekly

interval. For each τ , we construct a weighted directed exposure graph

Gτ = (Pτ , Eτ ), (5)

where nodes p ∈ Pτ are protocols and edges (p, q) ∈ Eτ represent token-
mediated exposure from p to issuing protocol q. Node weights encode pro-
tocol size (TVL) and edge weights encode the weekly change in exposure
induced by token flows and valuation updates. Each node p additionally
has a tabular descriptor vector xtab

p,τ including log-scaled TVL and token-
composition summaries (e.g., number of token types held, concentration mea-
sures, entropy) and a sector/category one-hot encoding.

4.1.2. Pretrained Graph-Tabular Encoder
We adopt GraphPFN as the encoder E(·) in our model, which is a

transformer-based graph-tabular foundation model that fuses graph struc-
ture with tabular node features via multi-head self-attention augmented with
structural information [20]. Given (Gτ , {xtab

p,τ }p∈Pτ ), the encoder produces d-
dimensional node representations

{hp,τ}p∈Pτ = EGraphPFN
(
Gτ , {xtab

p,τ }p∈Pτ

)
, hp,τ ∈ Rd. (6)

4.1.3. Edge-Level Prediction Head
For each forecast horizon h ∈ {1, 4, 8, 12} weeks, DeXposure-FM pre-

dicts both edge existence and edge weight (i.e., exposure change) for ordered
protocol pairs (p, q). We form a pairwise feature vector using a standard
symmetric composition of embeddings:

fpq,τ =
[
hp,τ ; hq,τ ; hp,τ ⊙ hq,τ ; |hp,τ − hq,τ |

]
, (7)
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and pass it through a multi-layer perceptron (MLP) head to obtain

(ŷexistpq , r̂pq,τ,h) = MLPlink(fpq,τ ), (8)

where ŷexistpq ∈ (0, 1) is the predicted probability of edge existence and r̂pq,τ,h ∈
R is a residual term. In our implementation, we adopt residual learning
for edge weights: let w̃τ (epq) = log(1 + wτ (epq)); then, we reconstruct the
predicted log-weight as

̂̃wτ+h(epq) = w̃τ (epq) + r̂pq,τ,h, (9)

with w̃τ (epq) = 0 when the edge is absent at time τ .

4.1.4. Node-Level Prediction Head and Network Statistics
To capture protocol-level dynamics, we predict the log-change in protocol

TVL using a node head:

∆̂p,τ+h =MLPnode

(
[hp,τ ; h

in
p,τ ; h

out
p,τ ]

)
,

∆̂p,τ+h = log(1 + wτ+h(p))− log(1 + wτ (p)),

for any protocol p ∈ Pτ ∩ Pτ+h, where hin
p,τ and hout

p,τ denote simple weighted
aggregations of incoming/outgoing neighbor embeddings at time τ (using the
current-week edge weights), which inject local flow context into the TVL-
change prediction.

Network-level statistics (e.g., density, concentration measures, and sec-
tor connectivity) are computed as deterministic functionals of the predicted
graph Ĝτ+h, enabling evaluation of the model both at the edge level and at
the level of aggregate stability indicators.

4.2. Training Pipeline
This section describes how we construct supervised training pairs from

weekly DeXposure snapshots, define the multi-task learning objective, and
optimize DeXposure-FM.

4.2.1. Data Preparation
DeXposure provides weekly snapshots of the inter-protocol exposure net-

work. For each discrete time index τ , we construct a weighted directed graph
Gτ = (Pτ , Eτ ) with node weights wτ (p) (protocol TVL) and edge weights
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wτ (epq) (exposure from p to q). Training examples are formed by an anchor
snapshot and a forecast horizon:

Gτ −→ Gτ+h, h ∈ {1, 4, 8, 12}, (10)

so that the model predicts the future graph state at horizon h conditional on
the current snapshot.

For each protocol p ∈ Pτ we provide tabular node features xtab
p,τ (including

log-scaled TVL, token counts, concentration measures, and sector/category
indicators) together with the graph structure Gτ .

Table 1 summarizes the dataset characteristics. The network exhibits
high edge persistence (mean overlap ratio 98.5%), reflecting the stable nature
of DeFi protocol interconnections.

Time-based expanding window splits. We adopt an expanding-
window walk-forward evaluation protocol to prevent look-ahead bias: all
validation and test targets occur strictly after the corresponding training
window, and the training window expands over time while validation and
test windows remain fixed.

Negative sampling. Edge existence is highly imbalanced. For each
horizon h, we construct a labeled edge set Sτ+h consisting of all positive
edges in Eτ+h plus uniformly sampled negative edges from the complement,
using a negative-to-positive ratio of 5:1. This sampled set is used for the
edge existence loss, while the edge weight loss is computed only on positive
edges.

4.2.2. Loss Functions
DeXposure-FM is trained with a multi-task objective combining (1) edge

existence classification, (2) edge weight regression, and (3) node-level TVL-
change prediction.

Edge existence (link prediction). For each candidate pair (p, q) ∈
Sτ+h we predict ŷexist

pq ∈ (0, 1) and minimize a weighted binary cross-entropy
loss:

Lexist =
∑

(p,q)∈Sτ+h

BCE
(
ŷexist
pq , yexist

pq ; wpos
)
, (11)

where wpos upweights positives to match the negative sampling ratio. Here,
binary cross-entropy is defined as below.
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Definition 1 (binary cross-entropy (BCE)). For a binary label y ∈ {0, 1}
and a predicted probability ŷ ∈ (0, 1), the binary cross-entropy loss is

BCE(ŷ, y) = −
(
y log(ŷ) + (1− y) log

(
1− ŷ

))
. (12)

Equivalently, if ŷ = σ(z) is produced from a logit z ∈ R via the sigmoid
σ(z) = 1/(1 + e−z), then

BCE(σ(z), y) = log
(
1 + ez

)
− yz, (13)

which is numerically stable and is often referred to as the logistic loss.

Edge weights (residual learning). For positive edges (p, q) ∈ Eτ+h, we
predict a residual term relative to the previous observed week. Let w̃τ (epq) =
log(1 + wτ (epq)) and w̃τ+h(epq) = log(1 + wτ+h(epq)). The link head outputs
r̂pq,τ,h and we apply a robust Smooth L1 loss:

Lweight =
∑

(p,q)∈Eτ+h

SmoothL1
(
r̂pq,τ,h −

(
w̃τ+h(epq)− w̃τ (epq)

))
. (14)

Equivalently, we reconstruct ̂̃wτ+h(epq) = w̃τ (epq) + r̂pq,τ,h and minimize
SmoothL1( ̂̃wτ+h(epq) − w̃τ+h(epq)). We set w̃τ (epq) = 0 when the edge is
absent at time τ . The log(1+·) transform stabilizes training under the heavy-
tailed exposure distribution. Here, smooth L1 loss is defined as follows.

Definition 2 (smooth L1 loss). For a scalar prediction û ∈ R and target
u ∈ R, let the residual be r = û − u. The Smooth L1 (Huber) loss with
threshold δ > 0 is defined as

SmoothL1δ(r) =


1
2
r2

δ
, if |r| < δ,

|r| − 1
2
δ, otherwise.

(15)

Equivalently, written directly in terms of (û, u):

SmoothL1δ(û, u) =


1
2
(û−u)2

δ
, if |û− u| < δ,

|û− u| − 1
2
δ, otherwise.

(16)
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Smooth L1 behaves like an ℓ2 loss near zero (encouraging small residuals)
and like an ℓ1 loss for large residuals (reducing sensitivity to heavy tails and
outliers). A common choice is δ = 1, when SmoothL1δ is briefly written as
SmoothL1.

Node-level TVL dynamics. We also predict the log-change in protocol
TVL, ∆p,τ+h = log(1 + wτ+h(p))− log(1 + wτ (p)), using Smooth L1:

Lnode =
∑

p∈Pτ∩Pτ+h

SmoothL1
(
∆̂p,τ+h −∆p,τ+h

)
, (17)

where ∆p,τ+h = log(1 + wτ+h(p)) − log(1 + wτ (p)) is the ground-truth log-
change in TVL.

Multi-task objective. The total loss is a weighted sum:

L = λexistLexist + λweightLweight + λnodeLnode, (18)

with λexist = 2.0, λweight = 0.5, and λnode = 20.0. These weights are calibrated
to balance the gradient contributions across tasks despite their different loss
magnitudes: edge existence loss Lexist ≈ 0.22, edge weight loss Lweight ≈
2.4, and node loss Lnode ≈ 0.05 on average. They also reflect the primary
importance of link prediction while using weight and node supervision to
encourage economically meaningful representations.

4.2.3. Optimization
Initialization. We adopt the open-source weights of GraphPFN as ini-

tialization of the encoder.
Optimizer. We use Adam [27] with hyperparameters β1 = 0.9, β2 =

0.999 and learning rate η = 5× 10−4.
Training details. We train for up to 20 epochs with early stopping

(patience = 3) based on validation AUPRC. Gradient clipping (∥∇∥2 ≤ 1.0)
is applied for stability.

Optional sharpness-aware training. To further improve generaliz-
ability, an optional variant wraps the base optimizer with Sharpness-Aware
Minimization (SAM), which seeks parameters with lower local sharpness by
optimizing against adversarial weight perturbations [23].

5. Empirical Evaluations on Machine Learning Benchmarks

We evaluate DeXposure-FM on two machine learning benchmarks: (1)
multi-step forecasting of edge existence, edge weights, and node TVL changes;
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and (2) predictive contagion stress testing, where we forecast future simulator-
implied stress-test losses under fixed counterfactual shocks. The following
Section 6 provides economic interpretation and applications of these predic-
tive outputs.

5.1. Baseline and Competitors
We compare our model with three approaches: GraphPFN: pre-trained

GraphPFN encoder with frozen weights; only the following task-specific pre-
diction heads are trained on DeXposure. In contrast, DeXposure-FM uses
GraphPFN weights as initialization and fine-tunes the encoder and task heads
end-to-end; (2) ROLAND: a representative temporal graph neural network
[49], trained from scratch on DeXposure; and (3) a persistent baseline that
directly uses the current value at time t as the prediction for a future timing
t+ h, where h is the horizon.

They use the same optimizer, learning rate, and training schedule as
DeXposure-FM.

5.2. Task I: Multi-step Forecasting
We first evaluate DeXposure-FM on task of multi-step forecasting.

5.2.1. Implementation Details
We evaluate multi-step forecasts at horizons h ∈ {1, 4, 8, 12} weeks on

three targets: (1) edge existence, a binary classification task of whether an
edge (p, q) is present at t+h, (2) edge weight, a regression task on log-scaled
exposure weight for edges that exist, and (3) node TVL change, a regression
task. We report AUROC [22] and AUPRC [15] for edge existence and MAE
and RMSE for edge weights and ∆TVL (all on the log scale).

5.2.2. Empirical Results
Table 3 reports the forecasting results on the strict 2025 hold-out test set.

Despite the strong persistence of the exposure network (Table 1), DeXposure-
FM substantially outperforms other methods for edge existence prediction,
edge weights, and node TVL changes.

5.3. Task II: Predictive Contagion Stress Testing
We then evaluate our model on whether forward-looking network forecasts

translate into accurate forecasts of stress-test losses generated by a fixed
contagion simulator. Specifically, we compare system losses computed on
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the model-predicted future network Ĝt+h with losses on the realized future
network Gt+h, under fixed counterfactual shock definitions.

5.3.1. Implementation Details
We train DeXposure-FM on the pre-2025 training period (Section 4.2) and

evaluate on the strict 2025 hold-out set. Each test week provides an origin t,
yielding multiple out-of-sample pairs (t, t + h) for horizons h ∈ {1, 4, 8, 12}.
To handle protocol entry/exit, all comparisons are computed on the common
node set Vt ∩ Vt+h.

Stress-test losses are computed using a DebtRank-style contagion simula-
tor [19, 7] under three scenarios: (1) top protocol shock : 50% TVL loss to the
largest protocol, (2) top-5 protocols shock : 30% TVL loss to the top-5 pro-
tocols, and (3) bridge sector shock : 100% TVL loss to bridge protocols. For
each (t, t+h), we run the same simulator on three graphs: the observed net-
work at t (persistence baseline), the predicted network Ĝt+h, and the realized
network Gt+h.

Because the DeFi exposure network is highly persistent (Table 1), the
persistence baseline is difficult to beat on average. We therefore report both
(1) overall performance and (2) a post-hoc stratified evaluation on the worst
20% of test cases under persistence, defined by the largest baseline absolute
errors within each horizon (pooled across shock scenarios). This stratification
is computed on the held-out test set and is not used for model selection.
We summarize improvement with ∆MAE = MAE(baseline)−MAE(model),
where positive values indicate lower error than persistence.

5.3.2. Empirical Results
Figure 2 shows comparison between three methods, and Figure 3 visual-

izes ∆MAE in both the overall population and the worst-20% tail. Table 4
reports horizon-level summary statistics.

On average, persistence remains a strong baseline (∆MAE(all) < 0, i.e.,
persistence achieves lower error than the model), reflecting the high week-
to-week stability of the DeFi exposure network. The value of a learned
forecaster emerges in the tail: among the 20% of test cases where persistence
errors are largest, DeXposure-FM achieves positive ∆MAE with win rates
of 83–100%. This tail regime, where network structure shifts most from
the previous week, is precisely where forward-looking stress tests matter for
macroprudential monitoring. The improvement is most pronounced under
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bridge-sector shocks (Figure 3), consistent with the sensitivity of cross-chain
contagion to evolving network topology.

6. Financial Economics Tools and Experimental Verifications

We now translate our model into financial-economics tools and provide
experimental verifications. DeXposure-FM is directly relevant to macropru-
dential monitoring of decentralized financial infrastructure, addressing the
data gaps highlighted.

Concretely, let Gt denote the observed weekly exposure graph and let
Ĝt+h denote the model’s h-step-ahead forecast. We treat each monitoring
“tool” as a deterministic functional of a graph (a measurement map) that
can be applied either descriptively on Gt or predictively via the forecast-
then-measure pipeline:

Gt
DeXposure-FM−−−−−−−−−−→ Ĝt+h

tools−−−−→ M̂t+h ≡ M(Ĝt+h), (19)

where M(·) includes protocol-level systemic-importance rankings (SIS), cross-
sector spillover concentration, and scenario-based stress-test losses. This
framing aligns with the macroprudential objective of producing actionable,
time-t signals about time-t + h fragility (e.g., watchlists, risk channels, and
scenario backstops), while remaining fully transparent about the underlying
network objects.

6.1. Systemic Risk Measurement: SIS and Spillovers
We first introduce SIS and spillovers as systemic risk measurement.

6.1.1. Implementation
We compute protocol-level and network-level indicators on each weekly

exposure snapshot. For protocol p, the SIS combines interconnectedness,
exposure concentration, and scale:

SISp = α · ˜PageRankp + β · TailExposurep + γ · ˜log(1 + TVLp), (20)

where TailExposurep is the share of p’s top-k outgoing exposures (we use
k = 5), and α, β, γ are non-negative weights that sum to 1 (default α = β =
γ = 1/3). We normalize PageRank [12] and log(1 + TVL) to comparable
scales (denoted by tildes). In parallel, we aggregate edge weights into a
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sector-to-sector spillover matrix S ∈ RK×K where Sij is total exposure from
sector i to j, and compute a scale-invariant spillover concentration index as
the Herfindahl-Hirschman Index (HHI) [37] of off-diagonal entries:

SpilloverIndex = HHI ({Sij : i ̸= j}) . (21)

These measures operationalize the network-theoretic insight that inter-
connectedness, not just size, determines systemic fragility [1, 24]. Weekly
SIS rankings help identify protocols whose distress would propagate broadly,
while spillover monitoring can highlight sector pairs that act as risk conduits
(e.g., stablecoins and bridges) [29, 21, 17].

SIS and spillovers are standard descriptive measures when computed on
the observed network Gt. The contribution of DeXposure-FM is to make
them forward-looking : we first forecast a future exposure graph Ĝt+h and
then compute

ŜISt+h(p) = SISp(Ĝt+h),

̂SpilloverIndext+h = SpilloverIndex(Ĝt+h).

This yields actionable forecasts such as (1) a predicted watchlist of systemi-
cally important protocols at t+h, and (2) predicted cross-sector risk channels.

At each week t, a supervisor computes the current dashboard on Gt and
the forecast dashboard on Ĝt+h. Large predicted changes in the top-K SIS
list or spikes in predicted spillover concentration motivate targeted stress
scenarios (Section 6.2) and deeper qualitative review (e.g., governance risk
and code audit status of newly elevated protocols).

6.1.2. Empirical Validation
Empirically, we validate this “forecast-then-measure” workflow at the level

of aggregate risk metrics (including mean SIS and spillover concentration) by
comparing values computed on Ĝt+h vs. Gt+h (Figure 4) and by event-window
case studies (Figure 5).

6.2. Stress Testing and Contagion Assessment
Stress testing maps a counterfactual shock scenario into a system-wide

loss measure by propagating distress through the exposure network, provid-
ing a scenario-specific analogue of macro stress tests in a DeFi setting.
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6.2.1. Implementation
We implement a DebtRank-style contagion simulation to assess systemic

loss propagation, following the loss-allocation logic [19, 7]. Given an initial
shock to protocol p0 with loss ratio δ0, we run the following procedure:

1. Initialize: Lossp0 = δ0 · TVLp0 .
2. Propagate: When a distressed debtor p has loss Lossp, we allocate its

loss to its creditors q proportionally to their exposures Eqp:

∆Lossq = Lossp ·
Eqp∑
q′ Eq′p

. (22)

3. Iterate: If Lossq > τ · TVLq (distress threshold τ = 0.1), protocol q
becomes distressed and propagates losses to its creditors. Losses are
capped at TVLq.

4. Terminate: When no new protocols become distressed.

We report total system loss (as a percentage of total TVL), contagion depth
(propagation rounds), and affected-protocol counts. The three stress scenar-
ios used throughout are: top protocol shock (50% TVL loss), top-5 protocols
shock (30%), and bridge sector shock (100%).

6.2.2. Empirical Verification
Section 5.3 evaluates forward-looking stress testing; here, we run the same

simulator on Gt (persistence baseline), Ĝt+h (model forecast), and Gt+h (re-
alized future), and then compare the resulting system loss. Because the
DeXposure network is highly persistent week-to-week, the persistence base-
line is strong on average. However, in the subset of weeks where realized
losses deviate most from persistence (the worst 20% baseline-error regime),
DeXposure-FM provides consistent improvements (Table 4), with gains con-
centrated in bridge-sector shocks (Figure 3). This supports a macropruden-
tial interpretation: the model is most valuable as a backstop for scenario
analysis under non-stationary reallocation of exposures.

6.3. Forward-looking Risk Metric Forecasting
Aggregate risk metrics (e.g., concentration, density, spillovers) serve as

dashboard-style indicators of evolving fragility. Forecasting these aggregates
provides a practical way to monitor trend shifts and calibrate the forecast-
then-measure pipeline.
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6.3.1. Implementation
Beyond stress testing, we can forecast aggregate stability indicators by

first predicting a future exposure graph Ĝt+h and then computing determin-
istic risk metrics on it (e.g., TVL concentration, edge concentration, network
density, spillover index, and summary statistics of SIS). We compare these
predicted metrics to their realized counterparts on Gt+h across the 2025 hold-
out set.

6.3.2. Empirical Verification
Figure 4 reports predicted vs. realized risk metrics for h ∈ {1, 4, 8, 12}.

We interpret these plots as a calibration and monitoring check: even when
persistence dominates levels, the predicted metrics can flag directional changes
and large deviations that motivate deeper scenario analysis and qualitative
review.

6.4. Early Warning Signals and Event Studies
Early warning analysis evaluates whether forecast-based measurements

shift in advance of major stress events, providing event-study evidence that
the forecast-then-measure tools can produce timely alerts around regime
changes.

6.4.1. Implementation
We examine two major stress events: the Terra/Luna collapse (May 9,

2022) and the FTX collapse (November 7, 2022). To avoid event leakage, for
each event, we train an event-specific forecaster using only snapshots strictly
prior to the event window, then generate one-step-ahead forecasts within the
event window. We track structural indicators and stress-test outcomes (via
Section 6.2) and monitor potential early warning features:

• Changes in network connectivity (e.g., density ρt),

• Concentration shifts (e.g., TVL HHI), with practical threshold rules
such as ∆HHIt > 2σ,

• Predicted stress-test losses under standard scenarios (Section 6.2).
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6.4.2. Empirical Verification
Table 5 summarizes structural shifts during the event windows, and Fig-

ure 5 compares predicted vs. realized trajectories for risk concentration and
stress-test loss. These case studies illustrate how model-based forecasting
can complement descriptive monitoring by providing forward-looking alerts
around regime changes.

6.5. Validity and Scope
Model-based risk measures are only as reliable as the conditions under

which they were trained and validated. We report several boundaries that
users should keep in mind.

6.5.1. Stable vs. Turbulent Regimes
The DeXposure dataset exhibits 98.5% mean edge overlap week-to-week,

meaning most credit relationships persist. Under such stable conditions,
GraphPFN achieves an AUROC larger than 0.91 across all forecast horizons;
see Table 3. During structural breaks, such as new protocol launches, gov-
ernance attacks, or rapid deleveraging, the historical edge distribution may
shift abruptly, and forecasts should be interpreted with greater caution. The
degradation of ROLAND illustrates how models without pre-trained repre-
sentations struggle when asked to extrapolate beyond short horizons.

6.5.2. Data Coverage
DeXposure-FM is trained exclusively on on-chain DeFi protocols sourced

from DeFiLlama. It does not observe:

• Centralized exchange (CEX) balances or order-book exposures,

• Over-the-counter (OTC) derivatives or lending agreements,

• Off-chain reserves backing stablecoins (e.g., Treasury holdings of USDC).

Consequently, the model captures intra-DeFi contagion but cannot directly
assess spillovers to or from traditional financial institutions, a gap that mat-
ters as DeFi-TradFi linkages deepen.

6.5.3. Temporal Resolution
The training dataset aggregates to weekly snapshots. Intraday or even

daily dynamics, such as flash-loan attacks [35] or rapid liquidation cascades
[46], are smoothed out. For high-frequency risk monitoring, complementary
tools operating on block-level data would be required.
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6.5.4. Cross-chain Data Consistency
DeXposure aggregates data across 602 blockchains, each with its own

indexing quirks and oracle delays. Minor inconsistencies in timestamp align-
ment or token-price feeds can introduce noise. Users should be aware that
edge weights near reporting boundaries may reflect data artifacts rather than
genuine exposure changes.

6.5.5. TVL as a Measurement Proxy
TVL aggregates heterogeneous assets without risk weights, a limitation

we discuss in Section 8. Nevertheless, TVL remains the main metric for
assessing DeFi protocol significance [4], and its changes over time capture
the capital flows that drive contagion [50]. The tools are therefore most in-
formative for relative monitoring (rankings, concentration changes, scenario
comparisons) rather than absolute loss accounting.

6.5.6. Our aim: Complement, not replace, qualitative judgment
Model outputs such as SIS rankings and spillover indices are quantitative

summaries, not definitive verdicts. A protocol may rank low on SIS yet pose
idiosyncratic risks (e.g., smart-contract vulnerabilities, oracle manipulation)
that network topology alone cannot capture [3, 25]. Supervisors should tri-
angulate model signals with code audits, governance analyses, and market
intelligence.

7. Future Development Plan

We plan to continuously update and improve DeXposure-FM. Below is
our future development plan.

7.1. Enlarging Training Data Pool
The current DeXposure-FM is trained on weekly inter-protocol snapshots

from the DeXposure dataset, using a GraphPFN encoder as pretrained ini-
tialization. While this provides broad on-chain coverage at a stable temporal
resolution, it omits key off-chain channels through which DeFi is funded,
hedged, and linked to traditional markets. In DeXposure-FM 2.0, we plan to
expand the training pool by incorporating additional data sources, includ-
ing centralized exchange (CEX) balances and order-book–implied exposures,
over-the-counter (OTC) derivatives and lending agreements, and disclosures
on off-chain stablecoin reserves (e.g., USDC’s Treasury-backed holdings). We
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also aim to add higher-frequency data (daily or intraday, where feasible),
particularly around stress episodes, to better capture rapid deleveraging and
liquidity dynamics that weekly aggregation smooths out.

7.2. Expanding Proxies for Credit Exposure
Total Value Locked (TVL) is a convenient but imperfect proxy for eco-

nomic exposure. It aggregates heterogeneous assets into a single dollar value
without adjusting for liquidity, haircuts, or collateral quality. As a result,
equal TVL can imply very different loss-absorbing capacity and contagion
risk; for example, $1B held in thinly traded governance tokens is not eco-
nomically equivalent to $1B in USDC, and TVL can also move mechanically
with prices even when underlying positions are unchanged. To address these
limitations, DeXposure-FM 2.0 will incorporate asset-level risk weights and
composition features (e.g., liquidity and volatility proxies, depeg risk, and
observable collateral rules) to produce risk-adjusted exposure estimates and
more interpretable systemic-risk indicators.

7.3. Model Drift and Continuous Update
DeFi evolves rapidly: new chains launch, token standards change, and in-

centive mechanisms shift. This non-stationarity implies that a model trained
on historical regimes may gradually lose accuracy as exposures and flows
depart from past patterns, including both gradual structural change and dis-
crete breaks from major upgrades or new collateral rules. Periodic retrain-
ing on updated snapshots is therefore essential to maintain forecast quality,
ideally paired with drift monitoring (e.g., calibration and error shifts by sec-
tor/chain) and versioned releases so that risk signals can be traced to specific
data vintages and model iterations.

7.4. Innovative Model Architecture
The future DeXposure-FM 2.0 will include an innovative hybrid architec-

ture that combines the current direct multi-horizon forecasting paradigm [36]
with diffusion-based generative modeling [32]. Auto-regressive models are ef-
ficient and accurate for point and conditional forecasts, but they can struggle
to represent globally coherent network trajectories over long horizons, espe-
cially under stress. Diffusion models, by contrast, provide a principled way
to learn complex conditional distributions by gradually denoising samples,
and have recently shown strong performance in structured generation tasks,
such as in diffusion language models [31].
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7.5. Open Source, Competitions, and Community Development
We endeavor to develop DeXposure-FM to become fundamental infras-

tructure rather than a closed research artifact. We have released an open-
source version of model weights and training code. We will continue our
open-source efforts when improving the model. Based on the DeXposure
dataset and DeXposure-FM model, we will organize public benchmarking
competitions. These challenges will be designed to encourage robust meth-
ods and will include baseline implementations, leaderboards, and model cards
reporting calibration and failure modes. We also aim to build a sustained
community around DeFi economic measurement. By lowering barriers to en-
try and making the measurement process transparent, we hope to accelerate
cumulative progress on reliable, policy-relevant tools for monitoring systemic
risk in decentralized financial networks.

8. Conclusions

Credit exposures in decentralized finance (DeFi) are often embedded in
token holdings and smart-contract interactions, rather than recorded as ex-
plicit bilateral claims, forming a tightly coupled network of inter-protocol
dependencies. In such an environment, a disturbance to a single token can
propagate across protocols, generating sizable and difficult-to-contain con-
tagion. As DeFi becomes more intertwined with traditional financial in-
frastructure, most prominently via stablecoins, this evolving risk landscape
calls for stronger tools to measure and forecast exposures. We introduce
DeXposure-FM, which is arguably the first time-series, graph foundation
model, designed for DeFi. DeXposure-FM combines a graph–tabular encoder
with pretrained weights as initialization and multiple task-specific heads. It
is trained on the DeXposure dataset, comprising 43.7 million observations
spanning 4,300+ protocols on 602 blockchains and 24,300+ unique tokens.
The model is trained for credit-exposure forecasting, jointly learning the dy-
namics of protocol-level flows and the evolving topology and weights of ex-
posure links, from which sector-level spillovers and other network statistics
are derived. Across a suite of machine-learning benchmarks, DeXposure-FM
consistently outperforms strong competitors, including a prior graph foun-
dation model and state-of-the-art temporal graph neural networks. We also
translate the model outputs into economically interpretable indicators, in-
cluding time-varying measures of systemic importance, sector-level spillover,
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and early-warning signals based on shifts in network concentration and re-
liance on fragile collateral, which illustrate applications to macroprudential
monitoring, DeFi stress testing, and counterfactual policy analysis. The tools
are fully supported in the empirical validations. The model and code have
been publicly available.
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Figure 1: Multi-layer credit exposure in DeFi. A user stakes ETH with Lido, receiving
stETH, which is wrapped into wstETH and deposited into Pendle. Each protocol holds
the liability of the preceding one, creating a chain of credit exposures from Pendle to Lido.
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Figure 2: Predictive contagion stress testing (Task II). We compare system loss (%) under
identical shocks when running the contagion simulator on the observed network at time t
(persistence baseline), the model-predicted network Ĝt+h, and the realized future network
Gt+h.
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Figure 4: Forward-looking risk metric forecasting on predicted exposure graphs. Each
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predicted graph Ĝt+h (y-axis), across horizons.
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Figure 5: Early warning event studies. For each event window, we compare predicted vs.
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Table 1: DeXposure dataset statistics.

Statistic Value
Total snapshots 283 weeks
Time range 2020-03-23 ∼ 2025-08-18
Mean nodes per week 5,676
Mean edges per week 30,424
Mean edge overlap ratio 98.5%
Protocol categories ∼ 15 classes
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Table 2: Training hyperparameters for DeXposure-FM experiments.

Hyperparameter Value
Data granularity Weekly snapshots
Forecast horizons h {1, 4, 8, 12} weeks
Negative sampling ratio 5:1 (neg:pos)
Optimizer Adam (β1 = 0.9, β2 = 0.999)
Learning rate (heads) 5× 10−4

Learning rate (backbone) 5× 10−5 (fine-tune only)
Training epochs 20 (early stopping patience=3)
Gradient clipping ∥∇∥2 ≤ 1.0

Loss weights:
λexist (edge existence) 2.0

λweight (edge weight) 0.5

λnode (node prediction) 20.0
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Table 3: Multi-step forecasting results on 2025 hold-out test set at horizons h ∈ {1, 4, 8, 12}
weeks. DeXposure-FM = Finetuned Foundation Model, GraphPFN = Graph Prior Fitted
Network with Frozen weights. Persistence = naive baseline predicting Ât+h = At, Ŵt+h =
Wt.

Edge Exist Edge Weight Node ∆TVL
Model h AUROC AUPRC MAE RMSE MAE RMSE

DeXposure-FM

1 0.995 0.972 2.465 3.388 0.056 0.400
4 0.995 0.973 2.489 3.424 0.140 0.680
8 0.994 0.967 2.554 3.509 0.229 0.890
12 0.993 0.967 2.648 3.606 0.286 1.046

GraphPFN

1 0.988 0.938 3.260 4.383 0.059 0.401
4 0.988 0.940 3.189 4.049 0.142 0.682
8 0.987 0.938 3.169 4.064 0.215 0.896
12 0.986 0.936 3.136 4.130 0.324 1.056

ROLAND

1 0.961 0.865 3.240 4.264 0.060 0.403
4 0.962 0.868 3.242 4.162 0.141 0.684
8 0.961 0.867 3.213 4.180 0.221 0.895
12 0.961 0.866 3.195 4.177 0.279 1.058

Persistence

1 0.763 0.604 2.487 4.296 0.057 0.403
4 0.782 0.635 2.372 4.138 0.138 0.685
8 0.749 0.580 2.618 4.400 0.213 0.899
12 0.762 0.603 2.541 4.304 0.272 1.065
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Table 4: Predictive stress testing summary (2025 hold-out). ∆MAE is measured in system-
loss percentage points. Worst20% selects the 20% largest persistence-baseline errors within
each horizon (pooled across shock scenarios). “Win rate” is the fraction of worst20% cases
where the model has lower absolute error than persistence.

Horizon h ∆MAE(all) ∆MAE(worst20%) Win rate (worst20%)
1 −0.95 +3.04 100%
4 −1.71 +1.42 83%
8 −0.17 +2.60 100%
12 −0.55 +2.21 83%
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Table 5: Network structure changes during stress events, comparing the last pre-event
week (anchor) to the final week of the event window. Terra/Luna shows a flight-to-quality
pattern with TVL collapse but edge count increase as capital reorganizes across protocols.
The FTX event shows a positive ∆TVL because our dataset captures only on-chain DeFi
protocols: the collapse of a centralized exchange triggered capital migration into DeFi
as users withdrew funds to self-custody, consistent with the “flight to decentralization”
narrative [45].

Event Pre-TVL ($B) Post-TVL ($B) ∆TVL ∆Edges
Terra/Luna 261.9 166.3 −36.5% +9.3%
FTX 119.9 175.1 +46.1% −1.8%
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