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Abstract
This work studies heterogeneous Multi-Objective
Reinforcement Learning (MORL), where objec-
tives can differ sharply in temporal frequency.
Such heterogeneity allows dense objectives to
dominate learning, while sparse long-horizon re-
wards receive weak credit assignment, leading to
poor sample efficiency. We propose a Parallel Re-
ward Integration with Symmetry (PRISM) algo-
rithm that enforces reflectional symmetry as an in-
ductive bias in aligning reward channels. PRISM
introduces ReSymNet, a theory-motivated model
that reconciles temporal-frequency mismatches
across objectives, using residual blocks to learn
a scaled opportunity value that accelerates explo-
ration while preserving the optimal policy. We
also propose SymReg, a reflectional equivariance
regulariser that enforces agent mirroring and con-
strains policy search to a reflection-equivariant
subspace. This restriction provably reduces hy-
pothesis complexity and improves generalisation.
Across MuJoCo benchmarks, PRISM consistently
outperforms both a sparse-reward baseline and an
oracle trained with full dense rewards, improv-
ing Pareto coverage and distributional balance: it
achieves hypervolume gains exceeding 100% over
the baseline and up to 32% over the oracle. The
code is at https://github.com/EVIEHub/PRISM.

1. Introduction
Reinforcement Learning (RL) has been approaching human-
level capabilities in many decision-making tasks, such as
playing Go (Silver et al., 2017), autonomous vehicles (Kiran
et al., 2021), robotics (Tang et al., 2025a), and finance (Ham-
bly et al., 2023). Multi-Objective Reinforcement Learning
(MORL) extends this framework to handle multiple reward
channels simultaneously, allowing agents to balance com-
peting objectives efficiently (Liu et al., 2014; Hayes et al.,
2022). For example, a self-driving car must constantly bal-
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Figure 1. Reflectional symmetry in a two-legged agent. The left
panel shows a transition from state s to s′ under action a, whereas
the right panel shows the reflected transition, where states and
actions are transformed by Lg and Kg , respectively.

ance multiple goals, such as minimising travel time while
maximising passenger safety and energy efficiency. Pri-
oritising speed would compromise the safety objectives,
introducing the need for flexible and robust policies that can
optimise across diverse and sometimes conflicting goals.

This paper considers an important, yet premature, setting
where reward channels exhibit considerable heterogeneity
in facets such as sparsity. Dense objectives can overshadow
their sparse and long-horizon counterparts, steering policies
toward short-term gains, while neglecting the objectives
that are harder to optimise but potentially more important.
A straightforward approach is to employ reward shaping
methods to align the reward channels. However, existing
algorithms, such as intrinsic curiosity (Pathak et al., 2017;
Aubret et al., 2019) and attention-based exploration (Wei
et al., 2025), are developed for single-objective cases and
have significant deficiencies: separately shaping individ-
ual objectives can distort the Pareto front and structures
between objectives. This highlights a critical gap in the
literature: MORL requires a reward shaping method that en-
ables efficient integration of the parallel but heterogeneous
reward signals, leveraging their intrinsic structure, in order
to improve sample efficiency.

To this end, we propose Parallel Reward Integration with
Symmetry for MORL (PRISM), a method that structurally
shapes the reward channels and leverages the reflectional
symmetry in agents in heterogeneous MORL problems. We
design a Reward Symmetry Network (ReSymNet) that pre-
dicts the reward given the state of the system and any avail-
able performance indicators (e.g., dense rewards in this
work). The available sparse rewards are used as supervised
targets. In ReSymNet, residual blocks are employed to ap-
proximate the ‘scaled opportunity value’, which has been
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proven to help accelerate training, decrease the approxima-
tion error, while maintaining the optimal solution of the
native reward signals (Laud, 2004). After proper training,
our ReSymNet can be a plug-and-play technique, compati-
ble with any off-the-shelf MORL algorithm in an iterative
refinement cycle, where the agent observes the shaped re-
wards to improve its policy and the reward model observes
better trajectories from the updated policy to improve the
approximated reward function. To exploit the structural
information across reward signals, we design a Symmetry
Regulariser (SymReg) to enforce reflectional equivariance
of the objectives, which provably reduces the hypothesis
complexity. Intuitively, incorporating reflectional symmetry
as an inductive bias allows an agent to generalise experience
from one situation to its mirrored counterpart.

The complementary components of PRISM synergise as
follows. Heterogeneous reward structures cause asymmetric
policy learning that violates the agent’s physical symme-
try: when dense objectives provide immediate gradients
while sparse objectives only signal at the end of an episode,
the policy may overfit to the denser objectives in specific
states, failing to respect reflectional symmetry. ReSymNet
eliminates temporal heterogeneity by aligning objectives to
the same frequency, whereas SymReg enforces reflectional
symmetry by preventing asymmetric learning dynamics.

We prove that PRISM constrains the policy search into a
subspace of reflection-equivariant policies. This subspace
is a projection of the original policy space, induced by the
reflectional symmetry operator, provably of reduced hypoth-
esis complexity, measured by covering number (Zhou, 2002)
and Rademacher complexity (Bartlett & Mendelson, 2002).
This reduced complexity is further translated to improved
generalisation guarantees. In practice, this means that by en-
couraging policies to respect natural symmetries, the agent
searches over a smaller, more structured hypothesis space,
reducing overfitting and improving sample efficiency.

We conduct extensive experiments on the MuJoCo MORL
environments (Todorov et al., 2012; Felten et al., 2023),
using Concave-Augmented Pareto Q-learning (CAPQL) (Lu
et al., 2023) as the backbone for PRISM. Sparse rewards are
constructed by releasing cumulative rewards at the end of an
episode. PRISM achieves hypervolume gains of over 100%
against the baseline operating on sparse signals, and even up
to 32% over the oracle (full dense rewards), also indicating
a substantially improved Pareto front coverage. These gains
are echoed in distributional metrics, confirming that PRISM
learns a set of policies that are also better balanced and more
robust. Comprehensive ablation studies further confirm that
both ReSymNet and SymReg are critical. The code is at
https://github.com/EVIEHub/PRISM.

2. Related Work
Multi-Objective Reinforcement Learning. MORL algo-
rithms typically fall into three categories: (1) single-policy
methods that optimise user-specified scalarisations (Mof-
faert et al., 2013; Lu et al., 2023; Hayes et al., 2022); (2)
multi-policy methods that approximate the Pareto front by
solving multiple scalarisations or training policies in par-
allel (Roijers et al., 2015; Van Moffaert & Nowé, 2014;
Reymond & Nowé, 2019; Lautenbacher et al., 2025); and
(3) meta-policy and single universal policy methods that
learn adaptable policies given some preferences (Chen et al.,
2019; Yang et al., 2019; Basaklar et al., 2023; Mu et al.,
2025; Liu et al., 2025). While these works have advanced
Pareto-optimal learning, less attention has been given to
heterogeneity in reward structures.

Reward Shaping. A large volume of literature tackles
sparse rewards through reward shaping. Potential-based
shaping (Ng et al., 1999) ensures policy invariance but re-
quires hand-crafted potentials. However, this method’s re-
liance on a manually designed potential function proved
limiting. Intrinsic motivation methods reward novelty or
exploration (Pathak et al., 2017; Burda et al., 2019), while
self-supervised methods predict extrinsic returns from trajec-
tories (Memarian et al., 2021; Devidze et al., 2022; Holmes
& Chi, 2025). Recent advances utilise statistical decom-
position to address sparsity (Gangwani et al., 2020; Ren
et al., 2022), or capture complex reward dependencies using
transformers (Tang et al., 2024; 2025b). These approaches
improve sample efficiency in single-objective RL, but do not
extend naturally to MORL, where heterogeneous sparsity
and scale can distort learning dynamics and Pareto-optimal
trade-offs.

Reflectional Equivariance. To incorporate reflectional
symmetry, a possible method is data augmentation, which
adds mirrored transitions to the replay buffer but doesn’t
guarantee a symmetric policy and increases data process-
ing costs (Lin et al., 2020). Mondal et al. (2022) propose
latent space learning that encourages a symmetric represen-
tation through specialised loss functions. Another line of
research focuses on equivariant neural networks (van der
Pol et al., 2020; Mondal et al., 2020; Wang et al., 2021).
For example, Wang et al. (2022) design a stronger induc-
tive bias via architecture-level symmetry, which hard-codes
equivariance into the model for instantaneous generalisation.
However, Park et al. (2025) show that strictly equivariant
architectures can be too rigid for tasks where symmetries are
approximate rather than perfect. Building on this insight,
our framework helps overcome the limitations of strictly
equivariant architectures through tunable flexibility whilst
being model-agnostic.
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3. Preliminaries
Multi-Objective Markov Decision Process. Formally,
we define an MORL problem via the Multi-Objective
Markov Decision Process (MOMDP) model, as a tuple
M = (S,A,P, r, γ): an agent at state s from a finite or
continuous state space S, taking action a from a finite or
continuous action space A, moves herself according to a
transition probability function P : S×A×S ′ → [0, 1], also
denoted as P (s′|s, a). The agent receives a reward via an L-
dimensional vector-valued reward function r : S×A → RL,
where L is the reward channel number, which decays by
a discount factor γ ∈ [0, 1). The goal in MORL is to find
a policy π : S → A that optimises the expected cumula-
tive vector return, defined as J(π) = Eπ [

∑∞
t=0 γ

trt]. This
paper addresses episodic tasks, where each interaction se-
quence has a finite horizon and concludes when the agent
reaches a terminal state, at which point the environment
is reset. Episodes τi are i.i.d. draws from the behaviour
distribution D, which describes the probability of observ-
ing different possible trajectories under the policy being
followed.

Reward Sparsity. Reward sparsity can be modelled as
releasing the cumulative reward accumulated since the
last non-zero reward with probability prel at each timestep.
When prel = 0, this reduces to the most extreme case:
the agent receives rewards from dense channels DC =
{d1, d2, . . . , dD} with observable rewards rdit at every
timestep, but the sparse channel is revealed only once at
the end of the episode as RspT =

∑T
t=1 r

sp
t . The central

challenge is to recover instantaneous sparse rewards rspt for
each (st, at) using only the cumulative observation RspT and
correlations with dense channels. Formally, given a trajec-
tory τ = {(s1, a1), . . . , (sT , aT )} with cumulative sparse
reward Rsp(τ), the task is to infer rsp = [rsp1 , . . . , r

sp
T ]⊤,

where rspt is the sparse reward at timestep t, such that∑T
t=1 r

sp
t ≈ Rsp(τ). For prel > 0, an episode decomposes

into sub-trajectories where the same formulation applies.

Generalisability and Hypothesis Complexity. A generali-
sation gap, at the episodic level, characterises the generalis-
ability from a good empirical performance to its expected
performance on new data (Wang et al., 2019). It depends on
the hypothesis set’s complexity, which is measured in this
work by covering number (Zhou, 2002) and Rademacher
complexity (Bartlett & Mendelson, 2002).

Definition 3.1 (l∞,1 distance). Let X be a feature space
and F a space of functions from X to Rn. The l∞,1-
distance on the space F is defined as l∞,1(f, g) =
maxx∈X (

∑n
i=1 |fi(x)− gi(x)|).

Definition 3.2 (covering number). The covering number,
denoted N∞,1(F , r), is the minimum number of balls of
radius r required to completely cover the function space F
under the l∞,1-distance.

Definition 3.3 (Rademacher complexity). Let F be a class
of real-valued functions on a feature space X , and let
τ1, . . . , τN be i.i.d. samples from a distribution over X .
The empirical Rademacher complexity of F is R̂N (F) =
Eσ[supf∈F

1
N

∑N
i=1 σif(τi)], where σ1, . . . , σN are inde-

pendent Rademacher random variables taking values ±1
with equal probability. The Rademacher complexity of F is
the expectation over the sample set.

4. Parallel Reward Integration with Symmetry
This section introduces our algorithm PRISM.

4.1. ReSymNet: Reward Symmetry Network

To address the challenge of heterogeneous reward objectives,
PRISM first transforms sparse rewards into dense, per-step
signals. We frame this as a supervised learning problem,
inspired by but distinct from inverse reinforcement learning,
as we do not assume access to expert demonstrations (Ng &
Russell, 2000; Arora & Doshi, 2021). The goal is to train a
reward model,Rpred, parametrised by ψ, that learns to map
state-action pairs to individual extrinsic rewards.

We hope to train the reward shaping model on a dataset col-
lected by executing a purely random policy, ensuring broad
state-space coverage. For each timestep t, we construct a
feature vector ht = [st, at, r

dense
t ], where st is the state, at

is the action, and rdense,t are the dense rewards obtained
from taking action at at state st, which crucially leverages
the information from already-dense objectives to help pre-
dict the sparse ones. Figure 2 visualises the ResNet-like
architecture.
Remark 4.1. Residual connections inRpred are inspired by
the theory of scaled opportunity value (Laud, 2004), whose
additive corrections preserve optimal policies, shorten the
effective reward horizon, and improve local value approxi-
mation (see Appendix B).

The network is optimised by minimising the mean squared
error between the sum of its per-step predictions over a
trajectory and the true cumulative sparse reward observed
for that trajectory:

L(ψ) =
∑
τ∈D

(∑
t∈τ
Rpred(ht;ψ)−Rsp(τ)

)2

. (1)

To ensure the learned reward function is robust and adapts
to the agent’s improving policy, we incorporate two tech-
niques: (1) we train an ensemble of reward models to reduce
variance and produce a more stable shaping signal, and (2)
we employ iterative refinement: the reward model is pe-
riodically updated using new, on-policy data collected by
the agent. This allows the reward model to correct for the
initial distribution shift and remain accurate as the agent’s
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Figure 2. Overview of ReSymNet.

behaviour evolves from random exploration to expert execu-
tion, as outlined in Algorithm 1 in Appendix B.

4.2. SymReg: Enforcing Reflectional Equivariance

However, aligning reward frequencies alone is insufficient,
as heterogeneous rewards cause the policy to learn asym-
metrically across objectives, violating the agent’s physical
symmetry. To address this, we leverage reflectional sym-
metry as an inductive bias to prevent asymmetric policy
learning. For example, for legged agents, flexing a leg is
essentially the mirror image of extending it. Standard poli-
cies must learn both motions separately, wasting data. By
encoding symmetry as an inductive bias, experience from
one motion can be reused for its mirror, improving sample
efficiency and robustness.

We formalise this physical intuition using group theory,
specifically the reflection group G = Z2. This group
consists of two transformations: the identity and a nega-
tion/reflection operator, g. Let S ⊆ Rds and A ⊆ Rda
denote the state and action spaces, respectively, where
ds is the dimension of the state space and da of the ac-
tion space. We define index sets Isasym ⊂ {1, . . . , ds}
and Issym ⊂ {1, . . . , ds} such that Isasym ∩ Issym = ∅ and
Isasym∪Issym = {1, . . . , ds}. This partitions the state vector as
s = (sasym, ssym) where sasym = sIsasym

and ssym = sIssym
. We

first partition the state vector s into an asymmetric part, sasym
(e.g., the torso’s position), and a symmetric part, ssym (e.g.,
the leg’s relative joint angles and velocities in Figure 1). The
state transformation operator, Lg : S → S , reflects the sym-
metric part of the state as follows: Lg(s) = (sasym,−ssym).
Similarly, we define index sets Iaasym and Iasym for the ac-
tion space, and the action space is split up into an asym-
metric part, aasym, and a symmetric part, asym. The ac-
tion transformation operator, Kg : A → A, reflects
the symmetric part of the action (e.g., the leg torques):
Kg(a) = (aasym,−asym).

The goal is to learn a policy, π, that is equivariant in
terms of the aforementioned transformation. A policy π
is reflectional-equivariant if it satisfies the following con-
dition for all states s ∈ S: π(Lg(s)) = Kg(π(s)). This
property means that the action for a reflected state is the

same as the reflection of the action for the original state. To
enforce this, we introduce a Symmetry Regulariser (Sym-
Reg) that explicitly penalises deviations from the desired
symmetry property. During training, for each observation
s, we compute both the standard policy output π(a|s;ϕ),
parameterised by ϕ, and the output for the reflected state
π(a|Lg(s);ϕ). The equivariance loss is then defined as:

Leq = Es∼D,a∼πϕ

[
∥π(a|Lg(s);ϕ)−Kg(π(a|s;ϕ))∥21

]
.

SymReg measures the deviation between the policy’s actual
response to a reflected state and the expected reflected re-
sponse. The training objective combines the standard policy
gradient loss, Jπ(ϕ), with SymReg: Ltotal = Jπ(ϕ) + λLeq,
where λ is a hyperparameter controlling SymReg.

5. Theoretical Analysis
This section presents theoretical guarantees of PRISM’s gen-
eralisability. Let Π be the full hypothesis space of policies
represented by ReSymNet, R(π; τ) is the cumulative return
for a single trajectory τ obtained following policy π.
Remark 5.1. As the backbone of the whole method, the
hypothesis complexity and generalisability of ReSymNet
contribute significantly to the generalisability of the whole
algorithm. Due to space limit, we present Theorem B.8
in the appendices for the covering number of ReSymNet’s
hypothesis space.

The theory relies on these assumptions:

Assumption 5.2 (bounded returns). For all policies π and
trajectories τ , 0 ≤ R(π; τ) ≤ B.

Assumption 5.3 (Lipschitz-continuous return). There exists
LR > 0 such that for all π, π̃ ∈ Π and any trajectory
τ , |R(π; τ) − R(π̃; τ)| ≤ LRd(π, π̃), where d(π, π̃) :=
sups∈S ∥π(s)− π̃(s)∥1.

Assumption 5.4 (compact spaces). The state space S and
action space A are compact metric spaces.

Assumption 5.5 (bounded policy). Policies π ∈ Π have
bounded inputs and weights.

Assumption 5.6 (episode sampling). The behaviour distri-
bution D has state marginal lower-bounded by pmin > 0
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on the state support of interest (finite-support or density
lower-bound assumption).

The Assumptions are reasonably mild. (Bartlett et al., 2017)
prove that feedforward ReLU are Lipschitz functions; since
our policies are implemented as ReLU networks, this en-
sures bounded sensitivity of the policy outputs to perturba-
tions. Assuming further that the return function is Lipschitz
in the policy outputs, it follows that returns are Lipschitz in
the policies themselves, as stated in Assumption 5.3. As-
sumption 5.6 ensures that all relevant states are sufficiently
sampled under the behaviour policy, which is, in practice,
reasonable because policy exploration mechanisms prevent
the policy from collapsing onto a subset of states.

5.1. Generalisability of Reflection-Equivariant Subspace

Let G = Z2 act on states and actions via Lg,Kg. An orbit-
averaging operator Q(π)(s) = 1

2

(
π(s) + Kg(π(Lg(s)))

)
maps any policy to a reflection-equivariant subspace (Qin
et al., 2022). The regulariser Leq = Es∥π(Lg(s)) −
Kg(π(s))∥21 encourages convergence to the fixed-point sub-
space, defined as follows.

Definition 5.7 (reflection-equivariant subspace). We define
reflection-equivariant subspace as Πeq := {π : π(Lg(s)) =
Kg(π(s))}.

We prove thatQ is reflectional equivariant, a projection, and
that its image coincides with the set of equivariant policies
in Lemmas C.4, C.5, and C.6 in Appendix C.3, respectively.
Thus, Q is surjective onto Πeq. To prove that the subspace
Πeq is less complex, we show that the projection Q is non-
expansive, which implies its image has a covering number
no larger than the original space.

Theorem 5.8. The space Πeq has a covering number less
than or equal to that of Π. Let N∞,1(F , r) be the covering
number of a function spaceF under the l∞,1-distance. Then,
N∞,1(Πeq, r) ≤ N∞,1(Π, r).

The l∞,1-distance between two policies πϕ and πθ is
d(πϕ, πθ) = sups ∥πϕ(s)−πθ(s)∥1. The distance between
their projections, d(Q(πϕ),Q(πθ)), is no larger using the
fact that Kg is a norm-preserving isometry, ∥Kg(a)∥1 =
∥a∥1, and that Lg is a bijection, which implies that the
supremum over s equals the supremum over Lg(s). Hence
Q is non-expansive, and a non-expansive surjective map
cannot increase the covering number. Following Lemma
C.6, N (Πeq, r) ≤ N (Π, r). A detailed proof can be found
in Appendix C.4.

The symmetrisation technique is fundamental in empiri-
cal process theory that reduces the problem of bounding
uniform deviations to analysing Rademacher complexity
(Bartlett & Mendelson, 2002).

Corollary 5.9. For any class F of functions bounded in

[0, B], the expected supremum of empirical deviations satis-
fies:

E

[
sup
f∈F

∣∣∣∣∣ 1N
N∑
i=1

(f(τi)− E[f ])

∣∣∣∣∣
]
≤ 2E[RN (F)],

where RN (F) = Eσ
[
supf∈F

1
N

∑N
i=1 σif(τi)

]
is

the Rademacher complexity and σi are independent
Rademacher random variables taking values ±1.

This bound transforms the original centred empirical process
into a symmetrised version that is often easier to analyse.
We now prove a high-probability uniform generalisation
bound over the reflection-equivariant subspace. A detailed
proof can be found in Appendix C.5. We recognise that
PRISM does not necessarily converge to it, which will be
discussed in the following subsection.
Theorem 5.10. With RΠeq = {τ 7→ R(π; τ) : π ∈ Πeq},
fix any accuracy parameter r ∈ (0, B) and confidence δ ∈
(0, 1). Then with probability at least 1− δ,

sup
π∈Πeq

|J(π)− ĴN (π)|

≤C

(∫ B

r

√
logN∞,1(RΠeq

, ε)

N
dε

)

+
8r√
N

+B

√
log(2/δ)

2N
,

where C is an absolute numeric constant, J(π) is the pop-
ulation expected return and ĴN (π) = 1

N

∑N
i=1R(π; τi) is

the empirical return on N i.i.d. episodes τ1, . . . , τN .
Corollary 5.11. Under the same assumptions as Theo-
rem 5.10, for any r ∈ (0, B) and δ ∈ (0, 1), the upper
bound in Theorem 5.10 for Πeq is at most the same bound
obtained by replacing Πeq with Π. By Lemma C.8, the
return-class covering numbers can be bounded by those of
the policy class with radius scaled by 1/LR. Mathemati-
cally, following Theorem 5.8, for every ε > 0,

logN∞,1

(
Πeq, ε/LR

)
≤ logN∞,1

(
Π, ε/LR

)
, (2)

hence the upper bound in Theorem 5.10 is no larger when
evaluated on Πeq.

The equivariance regulariser projects policies onto a smaller
fixed-point subspace Πeq, which provably has covering num-
bers no larger than Π. The return class inherits this reduction
via the Lipschitz map, so the Dudley entropy integral for
Πeq is bounded by that of Π. As such, the upper bound on
the generalisation gap is no larger for Πeq compared to Π.

5.2. Generalisability of PRISM

We now study the generalisability of PRISM, which does not
necessarily converge to the reflection-equivariant subspace
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exactly. Rather, PRISM might converge to an approximately
reflection-equivariant class. Using the orbit averaging Q,
we quantify this effect below.

Definition 5.12 (approximately reflection-equivariant class).
Approximately reflection-equivariant class is defined as
Πapprox(εeq) := {π ∈ Π : Leq ≤ εeq}.

Theorem 5.13. Let ξ := 1
2

√
εeq/pmin. Then for every

policy π ∈ Π,

|J(π)− J(Q(π))| ≤ LR · d(π,Q(π)) ≤ LRξ. (3)

Then every π ∈ Πapprox(εeq) lies in the sup-ball of radius
ξ around Πeq . Consequently, for any target covering radius
r > ξ, we have:

N∞,1

(
Πapprox(εeq), r

)
≤ N∞,1

(
Πeq, r − ξ

)
. (4)

By Lipschitzness of returns, the expected return of a policy
and its projection differ by at most LRd(π,Q(π)). The mis-
match ∆π controls this distance, and Lemma C.10 bounds
its supremum by ξ, giving the first inequality. Geometrically,
Πapprox(εeq) is contained in a ξ-tube around Πeq. Hence
any (r− ξ)-cover of Πeq yields an r-cover of Πapprox(εeq),
proving the covering-number relation (see Appendix C.6 for
a detailed proof).

Theorem 5.14. With RΠeq
= {τ 7→ R(π; τ) : π ∈ Πeq},

fix any accuracy parameter r ∈ (0, B) and confidence δ ∈
(0, 1). Then with probability at least 1− δ,

sup
π∈Πapprox(εeq)

|J(π)− ĴN (π)|

≤C

(∫ B

r

√
logN∞,1(RΠeq , ε)

N
dε

)

+
8r√
N

+B

√
log(2/δ)

2N
+ 2LRξ.

For π ∈ Πapprox(εeq), decompose the generalisation er-
ror relative to its projection Q(π) ∈ Πeq. The differences
in population returns |J(π) − J(Q(π))| and in empirical
returns |ĴN (π) − ĴN (Q(π))| are bounded by LRξ (Theo-
rem 5.13). The middle term |J(Q(π))− ĴN (Q(π))| is the
generalisation error of an equivariant policy. Taking supre-
mum, an equivariant bound is obtained (Theorem 5.10) plus
2LRξ. Detailed proofs are in Appendix C.6.

Corollary 5.15. Under the same assumptions as Theo-
rem 5.14, for any r ∈ (0, B) and δ ∈ (0, 1), the upper
bound in Theorem 5.14 for Πapprox(εeq) is at most the
same bound obtained by replacing Πapprox(εeq) with Π.
By Lemma C.8, the return-class covering numbers can be
bounded by those of the policy class with radius scaled by

1/LR. For any target covering radius r > ξ, we have

logN∞,1

(
Πapprox(εeq), r/LR

)
≤ logN∞,1

(
Πeq, (r − ξ)/LR

)
≤ logN∞,1

(
Π, (r − ξ)/LR

)
. (5)

Hence the upper bound in Theorem 5.14 is no larger when
evaluated on Πeq.

The covering relation incurs a slack of size ξ, leading to
bounds of the formN(Πapprox(εeq), r) ≤ N(Πeq, r−ξ) ≤
N(Π, r − ξ) . By contrast, in Corollary 5.11, this slack
disappears. Thus, the exact case guarantees a strict reduction
in complexity, whereas the approximate case trades a ξ-
shift in the radius for retaining proximity to the equivariant
subspace.

6. Experiments
We conduct extensive experiments to verify PRISM. The
code is at https://github.com/EVIEHub/PRISM.

6.1. Experimental Settings

Environments. Four MuJoCo (Todorov et al., 2012) envi-
ronments are used: mo-hopper-v5, mo-walker2d-v5, mo-
halfcheetah-v5, and mo-swimmer-v5. Table 3 in Appendix
D displays the environments and their dimensions, high-
lighting the diversity in space complexity. As a result, a
method must be able to find general solutions applicable to
various MORL challenges, instead of being just tailored to
one specific type of problem. Furthermore, the division of
asymmetric and symmetric state and action spaces to model
equivariance is detailed in Appendix D.

Baselines. PRISM is adaptable to any off-the-shelf MORL
algorithm. In this work, CAPQL (Lu et al., 2023) is used
as a backbone model, which is a method that trains a sin-
gle universal network to cover the entire preference space
and approximate the Pareto front. We produce (1) oracle:
instead of artificially setting a reward channel to be sparse,
this baseline model can be seen as the gold standard, and (2)
baseline: instead of utilising the proposed reward shaping
model, this method uses CAPQL (Lu et al., 2023) and only
observes the sparse rewards.

Evaluation. We use hypervolume (HV), Expected Utility
Metric (EUM), and one distributional metric, Variance Ob-
jective (VO) (Cai et al., 2023), for evaluation. The used
hyperparameters, together with a detailed explanation of
evaluation metrics, can be found in Appendix E.

6.2. Empirical Results

Reward Sparsity Sensitivity. Figure 3 illustrates the sensi-
tivity of MORL agents to varying levels of reward sparsity.
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Across all environments, we observe a sharp decline in HV
when one objective is made extremely sparse, with reduc-
tions ranging from 20 to 40% relative to the dense setting.
These results confirm that sparse objectives worsen policy
quality, as agents tend to neglect long-term sparse signals
in favour of denser objectives. For the rest of the paper,
we continue with the most difficult setting where extreme
sparsity is imposed on the first reward objective.

Return Distribution of Policy. Figure 4 illustrates the im-
pact of mixed sparsity on MORL across the considered envi-
ronments. Each subplot compares the approximated Pareto
fronts obtained when objective one is dense (blue dots) ver-
sus when it is made sparse (orange dots), while keeping
all other objectives dense. Extreme sparsity is imposed,
where the sparse reward is released at the end of an episode.
The results demonstrate a consistent pattern across all en-
vironments: when objective one becomes sparse, agents
systematically fail to discover high-performing solutions
along this dimension, instead concentrating their learning
efforts on the remaining dense objectives.

Comparison Experiments. Table 1 reports the obtained
results for HV, EUM, and VO. The results are averaged over
10 trials, with the standard deviations shown in grey.

PRISM consistently outperforms both the oracle and base-
line across environments. For mo-hopper-v5, PRISM im-
proves hypervolume by 21.5% over the oracle (1.58× 107

compared to 1.30× 107) and 88% over the baseline. Simi-
lar gains are observed for mo-walker2d-v5, where PRISM
achieves a 13% HV improvement over oracle and 43%
over the baseline. Notably, in mo-halfcheetah-v5, PRISM
yields a 32% improvement in HV compared to the oracle
(2.25× 104 against 1.70× 104) and more than doubles the
sparse result. These improvements imply that PRISM not
only restores solutions lost under sparsity but also expands
the range of trade-offs accessible to the agent. Improve-
ments in EUM follow the same trend, with increases of up
to 50% compared to the baseline. The concurrent increase
in EUM demonstrates that these solutions provide higher
expected utility, confirming that PRISM learns policies that
are both diverse and practically useful.

On distributional metrics, PRISM delivers more consistent
performance than both the oracle and baseline. VO in mo-
hopper-v5 increases from 43.36 (baseline) and 59.07 (or-
acle) to 66.66 under PRISM, and mo-walker2d-v5 shows
a 51% gain over the baseline. These gains are crucial be-
cause they indicate that PRISM does not simply maximise
HV by focusing on extreme solutions, but also produces
Pareto fronts that are better balanced, robust, and fair across
objectives. Figure 6 in Appendix F, which shows the ap-
proximated Pareto fronts, aligns with these results.

We provide two distinct examples to analyse the behaviour

Table 1. Experimental results. We report the average hypervolume (HV),
Expected Utility Metric (EUM), and Variance Objective (VO) over 10 trials,
with the standard error shown in grey. The largest (best) values are in bold
font.

Environment Metric Oracle Baseline PRISM

Mo-hopper-v5
HV (×107) 1.30± 0.13 0.84± 0.05 1.58± 0.05
EUM 129.04± 7.96 97.64± 4.18 147.43± 2.61
VO 59.07± 3.45 43.36± 1.61 66.66± 1.40

Mo-walker2d-v5
HV (×104) 4.21± 0.11 3.34± 0.16 4.77± 0.07
EUM 107.58± 2.86 82.13± 4.34 120.43± 1.64
VO 53.22± 1.39 39.18± 2.49 59.35± 0.80

Mo-halfcheetah-v5
HV (×104) 1.70± 0.20 0.97± 0.00 2.25± 0.18
EUM 81.29± 21.85 -1.46± 0.27 89.94± 15.33
VO 36.84± 10.06 -1.01± 0.20 40.72± 7.02

Mo-swimmer-v5
HV (×104) 1.21± 0.00 1.09± 0.02 1.21± 0.00
EUM 9.41± 0.12 4.10± 0.80 9.44± 0.14
VO 4.22± 0.08 1.58± 0.40 4.24± 0.07

of the learned reward signals compared to the oracle for mo-
walker2d-v5. Figure 5a illustrates a full 1000-step episode.
The shaped reward is highly correlated with the dense re-
ward throughout the entire trajectory. The alignment of
peaks and troughs confirms that ReSymNet captures the
dynamics of the environment, ensuring accurate credit as-
signment without temporal drift.

Figure 5b highlights a key theoretical advantage of ReSym-
Net. In high-performance regions (e.g., steps 250–270), the
shaped reward amplifies the signal, exceeding the magnitude
of the oracle. By creating steeper gradients for desirable
behaviours, the shaped reward can provide more effective
guidance than the raw environmental signal, explaining why
PRISM is capable of outperforming the oracle.

Ablation Study. We analyse the following ablation models
(w/o is the abbreviation for without), which remove sev-
eral aspects of the reward shaping model or the equivariance
loss: (1) PRISM: This is the proposed method, involving all
components, (2) w/o residual: This ablation model removes
the two residual blocks from the reward shaping model, (3)
w/o dense rewards: We remove the dense rewards as input
features to the reward model, (4) w/o ensemble: We remove
the ensemble of reward shaping models, and only employ
one, (5) w/o refinement: Rather than updating the reward
shaping model with expert trajectories, this approach merely
trains the reward shaping model using the random trajec-
tories collected at first, and (6) w/o loss: We remove the
equivariance loss term and merely use the reward shaping
model. We also include two ablation studies that remove
ReSymNet from PRISM and replace the reward shaping
model as follows: (7) uniform: Distributes the episodic
sparse reward Rsp(τ) equally across all T timesteps, and
(8) random: Samples random weights αt ∼ U(−1, 1) for
each timestep, normalises to sum to one, and scales by the
total reward.

The ablation results in Tables 10 and 11 in Appendix G high-
light the contribution of individual components. Removing
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Figure 3. The obtained hypervolume for various levels of sparsity amongst various dimensions.
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Figure 4. The approximated Pareto front for dense rewards (blue dots) and sparse rewards (orange dots) for the first reward objective.
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Figure 5. The dense (blue line) and shaped rewards (orange line)
over time for mo-walker2d-v5 and the first reward objective.

residual connections reduces HV and EUM across all en-
vironments (e.g., mo-hopper-v5 EUM falls from 147.43 to
128.40), showing their importance for scaled opportunity
value. Excluding dense reward features or ensembles also
lowers performance, but only moderately, suggesting that
state–action features already contain substantial signal. In-
terestingly, removing iterative refinement barely reduces
performance; in some cases, such as mo-halfcheetah-v5,
HV, and EUM remain comparable or even slightly higher
than the full model. This implies that shaping rewards from
a broad set of random trajectories is already highly effective.
Removing the symmetry loss reduces performance across
environments, indicating that the loss term successfully re-
duces the search space. Similar patterns are observed for
VO. Considering ReSymNet, uniform achieves moderate
performance by providing per-step gradients and leveraging
SymReg, while random performs poorly due to noisy, mis-
leading rewards. PRISM consistently outperforms both by
learning reward decomposition with ReSymNet and enforc-
ing structural consistency via SymReg, enabling accurate

credit assignment in complex multi-objective tasks.

7. Conclusion
This work proposes Parallel Reward Integration with reflec-
tional Symmetry for Multi-objective reinforcement learn-
ing (PRISM), a framework designed to tackle sample in-
efficiency in heterogeneous multi-objective reinforcement
learning, particularly in environments with sparse rewards.
Our approach is centred around two key contributions: (1)
ReSymNet, a theory-inspired reward model that leverages
residual blocks to align reward channels by learning a re-
fined ‘scaled opportunity value’, and (2) SymReg, a novel
regulariser that enforces reflectional symmetry as an induc-
tive bias in the policy’s action space. We prove that PRISM
restricts policy search to a reflection-equivariant subspace, a
projection of the original policy space with provably reduced
hypothesis complexity; in this way, the generalisability is
rigorously improved. Extensive experiments on MuJoCo
benchmarks show that PRISM consistently outperforms
even a strong oracle with full reward access in terms of a
wide range of metrics, including HV, EUM, and VO.
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A. Notation

Table 2. Notation.

Symbol Description

S State space
A Action space
P (s′|s, a) Transition probability
r(s, a) ∈ RL Vector-valued reward with L objectives
γ ∈ [0, 1) Discount factor
π : S → A Policy mapping
J(π) = Eπ

[∑∞
t=0 γ

trt

]
Expected cumulative vector return

D Behaviour distribution to sample episodes from
DC = {d1, . . . , dD} Dense reward channels
rdit Reward from dense channel di at timestep t
rspt Sparse reward at timestep t
τ = {(s1, a1), . . . , (sT , aT )} Trajectory
Rsp(τ) Cumulative sparse reward in episode τ
prel Probability of releasing sparse reward
ht = [st, at, r

dense
t ] Input feature vector for ReSymNet

Rpred ReSymNet
rsht Shaped reward at timestep t

Lg,Kg Reflection operators on states and actions
∆π(s) = π(Lg(s))−Kg(π(s)) Equivariance mismatch
Leq Equivariance regularisation loss
Π Hypothesis space of policies
Πeq = {π : π(Lg(s)) = Kg(π(s))} Reflection-equivariant subspace
Πapprox(εeq) Approximate equivariant policies with tolerance εeq

B. Additional Details and Theory of ReSymNet
We give additional details of ReSymNet as well as the theoretical motivation behind its architecture in this appendix.

B.1. Theoretical Motivation via Scaled Opportunity Value

The use of residual connections inRpred is motivated by the theory of scaled opportunity value (Laud, 2004).

Definition B.1 (Opportunity value). Let M be an MDP with native reward function R. The opportunity value of a transition
(s, a, s′) is defined as the difference in the optimal value of successor and current states: OPV(s, a, s′) = γVM (s′)−VM (s),
where VM is the optimal state-value function under MDP M .

Definition B.2 (Scaled opportunity value). For a scale parameter k > 0, the scaled opportunity value shaping function
augments the native reward with a scaled opportunity correction: OPVk(s, a, s

′) = Fk(s, a, s
′) = k(γVM (s′)−VM (s))+

(k − 1)R(s, a).

Lemma B.3. Let M be an MDP with reward function R and optimal policy π⋆. With k sufficiently large, the MDP with
shaped reward Fk satisfies: (1) policy invariance, π⋆ remains optimal under Fk; (2) horizon reduction, the effective reward
horizon is reduced to 1; and (3) improved local approximation, the additive term increases the separability of local utilities,
reducing approximation error in value estimation.

Residual blocks mirror the additive structure of scaled opportunity value: each block refines its input prediction via:
R(i)

pred(ht;ψ) = R
(i−1)
pred (ht;ψ)+∆i(ht;ψ), where ∆i is a learned correction. A single block can be viewed as approximating

a scaled opportunity-value transformation of its input, while stacking multiple blocks implements iterative refinement: each
stage reduces the residual error left by the previous one. This residual formulation both stabilises training and aligns with the
principle of scaled opportunity value, gradually shaping per-step predictions into horizon-1 signals that remain consistent
with the sparse episodic return Rsp(τ).
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B.2. Generalisability of ReSymNet

We extend the theoretical justification of ReSymNet from optimisation to generalisation. Following the stem–vine de-
composition of He et al. (2020), we prove that residual connections do not increase hypothesis complexity, and derive a
high-probability bound.

Notation and Assumptions. ReSymNet maps feature vectors ht ∈ Rd0 to sparse reward predictions rspt ∈ R through a
residual network. We decompose the network into:

• A stem: the main feedforward pathway consisting of K layers, each with a weight matrix Ai ∈ Rdi−1×di and
nonlinearity σi : Rdi → Rdi for i = 1, . . . ,K.

• A collection of vines: residual connections (skip connections) indexed by triples (s, t, i) where s is the source vertex
(where the connection starts), t is the target vertex (where it reconnects), and i distinguishes multiple vines between the
same pair of vertices. We denote the set of all vine indices as IV .

We denote vertices in the network as N(t), where t indexes the position in the computational graph. Each vine V(s, t, i)
is itself a small feedforward network with weight matrices As,t,i

1 , . . . ,As,t,i
Ks,t,i

and nonlinearities σs,t,i1 , . . . , σs,t,iKs,t,i
, where

Ks,t,i is the number of layers in that vine. The output at vertex N(t) is:

Ft(X) = FSt (X) +
∑

(s,t,i)∈IV

FVs,t,i(X),

where FSt (X) is the stem’s output at vertex t and the sum runs over all vines that reconnect at vertex t.

Assumption B.4 (Bounded parameters). Each stem weight matrix satisfies ∥Ai∥σ ≤ si for i = 1, . . . ,K, where ∥ · ∥σ
denotes the spectral norm. Each vine weight matrix satisfies ∥As,t,i

j ∥σ ≤ ss,t,ij . All nonlinearities are ρi-Lipschitz
continuous: for any x1,x2 in the domain,

∥σi(x1)− σi(x2)∥2 ≤ ρi∥x1 − x2∥2.

Input features satisfy ∥ht∥2 ≤ Bh, network per-step outputs satisfy |Rpred(ht;ψ)| ≤ Bpred for all t, and sparse rewards
satisfy |Rsp(τ)| ≤ Br for all trajectories τ . Trajectories have length bounded by Tmax.

Lemma B.5. Let X ∈ Rn×d be a data matrix with n samples and d features, satisfying ∥X∥2 ≤ B. Consider the hypothesis
space formed by all linear transformations with bounded spectral norm:

HA = {XA : A ∈ Rd×m, ∥A∥σ ≤ s}.

Then the ε-covering number satisfies:

logN∞,2(HA, ε) ≤
⌈
s2B2m2

ε2

⌉
log(2dm),

where m is the output dimension.

This lemma (Bartlett et al., 2017) shows that the complexity of a single linear layer scales with the square of its spectral
norm and input norm.

Lemma B.6. For an K-layer feedforward network with hypothesis spaceHff , the covering number satisfies:

N∞,2(Hff , ε) ≤
K∏
i=1

sup
A1,...,Ai−1

Ni,

where Ni is the covering number of layer i (viewed as a function of its input) when the preceding layers A1, . . . ,Ai−1 are
held fixed. The supremum is taken over all choices of the preceding weight matrices within their respective spectral norm
bounds.

This result shows that the covering number of a deep network is the product of the covering numbers of its individual layers.
For residual networks, where outputs are sums of stem and vine contributions, we require:

13
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Lemma B.7. Let F and G be two function classes. IfWF is an εF -cover of F (meaning every f ∈ F is within distance εF
of some element inWF ), andWG is an εG-cover of G, then the set

WF +WG = {f + g : f ∈ WF , g ∈ WG}

is an (εF + εG)-cover of the sum class F + G = {f + g : f ∈ F , g ∈ G}, and

N∞,2(F + G, εF + εG) ≤ N∞,2(F , εF )N∞,2(G, εG).

Proof. For any f + g ∈ F + G, there exist wf ∈ WF and wg ∈ WG such that ∥f − wf∥2 ≤ εF and ∥g − wg∥2 ≤ εG. By
the triangle inequality:

∥(f + g)− (wf + wg)∥2 ≤ ∥f − wf∥2 + ∥g − wg∥2 ≤ εF + εG.

The covering number bound follows since there are at most |WF | · |WG| distinct pairs (wf , wg).

Theorem B.8. Under Assumption B.4, let {εj}Kj=1 be tolerances for each stem layer and {εs,t,i}(s,t,i)∈IV
be tolerances for

each vine, satisfying
K∑
j=1

εj +
∑

(s,t,i)∈IV

εs,t,i ≤ ε.

Then the covering number of ReSymNet’s hypothesis spaceHres satisfies:

N∞,2(Hres, ε) ≤
K∏
j=1

N∞,2(Hj , εj)
∏

(s,t,i)∈IV

N∞,2(HVs,t,i, εs,t,i),

whereHj is the hypothesis space of stem layer j andHVs,t,i is the hypothesis space of vine V(s, t, i).

Applying Lemma B.5 to each weight matrix, this yields:

logN∞,2(Hres, ε) ≤
R
ε2
,

where the complexity measureR is:

R =

K∑
i=1

s2i ∥Fi−1(X)∥22
ε2i

log(2d2i ) +
∑

(s,t,i)∈IV

(ss,t,i)2∥Fs(X)∥22
ε2s,t,i

log(2d2s,t,i).

Here, Fi−1(X) denotes the output of the network after layer i− 1 (the input to layer i), and di is the dimension at layer i.

Proof. We proceed by analysing how residual connections compose with the stem. Consider vertex N(t) where one or
more vines reconnect. The output is:

Ft(X) = FSt (X) +
∑

(s,t,i)∈IV

FVs,t,i(X).

LetWt be an εt-cover ofHt (all possible stem outputs at vertex t). For each vine V(s, t, i) that reconnects at t, letWV
s,t,i be

an εs,t,i-cover ofHVs,t,i (all possible outputs of that vine).

By repeated application of Lemma B.7, the set:

W ′
t =

WS +
∑

(s,t,i)∈IV

WV
s,t,i :WS ∈ Wt,W

V
s,t,i ∈ WV

s,t,i


14
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is an
(
εt +

∑
(s,t,i)∈IV

εs,t,i

)
-cover ofH′

t (the combined outputs at vertex t), with covering number:

N∞,2(H′
t, ε

′
t) ≤ N∞,2(Ht, εt) ·

∏
(s,t,i)∈IV

N∞,2(HVs,t,i, εs,t,i),

where ε′t = εt +
∑

(s,t,i)∈IV
εs,t,i.

Each vine V(s, t, i) is itself a chain-like feedforward network, so Lemma B.6 applies to bound N∞,2(HVs,t,i, εs,t,i). For
identity vines (containing no trainable parameters), we have N V

s,t,i = 1 since there is only one function in the class.

Propagating this argument through all K stem layers yields:

N∞,2(Hres, ε) ≤
K∏
j=1

N∞,2(Hj , εj)
∏

(s,t,i)∈IV

N∞,2(HVs,t,i, εs,t,i).

The bound onR follows by applying Lemma B.5 to each weight matrix. For the stem, layer i contributes:

logNi ≤
s2i ∥Fi−1(X)∥22d2i

ε2i
log(2di−1di) ≈

s2i ∥Fi−1(X)∥22
ε2i

log(2d2i ),

where we simplify by assuming similar dimensions. Summing over all stem layers and all vine layers givesR.

Corollary B.9. LetHff be the hypothesis space of feedforward networks with the same total number of weight matrices
Ktotal = K +

∑
(s,t,i)∈IV

Ks,t,i as ReSymNet. Then for any ε > 0,

N∞,2(Hres, ε) ≤ N∞,2(Hff , ε).

Proof. Both covering numbers have the product form
∏Ktotal
k=1 Nk, where each factor Nk corresponds to a single weight

matrix. By Lemma B.5, each Nk depends only on the spectral norm sk of that weight matrix and the norm of its input
∥Fk−1(X)∥2, regardless of whether the matrix appears in the stem or a vine. Therefore, when the total number of weight
matrices and their norms are held fixed, the covering numbers are bounded identically.

B.3. Algorithm Chart

C. Proofs
This appendix collects all proofs omitted from the main text.

C.1. Lemmas

This section introduces the general lemmas used to obtain an upper bound on the generalisation gap.

Dudley Entropy Integral. The Rademacher complexity can be bounded through the metric entropy of the function class
using Dudley’s entropy integral (Dudley, 1967; Bartlett & Mendelson, 2002).

Lemma C.1 (Dudley Entropy Integral). For any coarse-scale parameter r ∈ (0, B), the empirical Rademacher complexity
satisfies:

R̂N (F) ≤ C

(∫ B

r

√
logN∞,1(F , r)

N
dε

)
+

4r√
N
,

where C > 0 is an absolute constant, and N∞,1(F , r) is the covering number of F in ℓ∞ at scale r with respect to N
samples

This inequality connects the probabilistic complexity (Rademacher complexity) to the geometric complexity of the function
class and covering numbers.

McDiarmid’s Concentration Inequality. To convert expectation bounds into high-probability statements, we employ
McDiarmid’s bounded difference inequality (McDiarmid et al., 1989).
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Algorithm 1 ReSymNet with any MORL algorithm

1: Input: Release probability prel, number of initial episodes N , number of expert episodes E, dense channels DC, MORL
algorithm, timesteps per cycle M , ensembles K, refinements IR, val split, patience

2: Output: Trained reward ensemble E = {Rpred,ψ1
, . . . ,Rpred,ψK

}, trained MORL policy
3:
4: # Collecting random experiences
5: for i = 1 to N do
6: Execute random policy to collect τ = {(s0, a0), . . . , (sT , aT )}
7: Set l = 0
8: for t ∈ T do
9: With prob. prel, release Rspt =

∑t
s=l r

sp
s ; Set l = t if released

10: end for
11: Segment τ into sub-trajectories {τj} based on released rewards
12: for all sub-trajectory τj do
13: for all (st, at) ∈ τj do
14: Compute features: ht = [st, at, r

dense
t ]

15: end for
16: Add datapoint

(
{ht}t∈τj , Rsp(τj)

)
to dataset D

17: end for
18: end for
19:
20: # Ensemble training
21: for k = 1 to K do
22: Split D into Dtrain and Dval
23: TrainRpred,ψk

via Eq. 1 with early stopping:
24: L(ψk) =

∑
τ∈Dtrain

(∑
t∈τ Rpred(ht;ψk)−Rsp(τ)

)2
25: end for
26:
27: # RL training with iterative refinement
28: timestep = 1
29: for cycle = 1 to IR do
30: for t = timestep to M + timestep do
31: Observe st, at and compute features ht
32: r

(k)
t ← Rpred(ht;ψk) for k = 1, . . . ,K

33: rsh
t ← 1

K

∑K
k=1 r

(k)
t

34: Update RL algorithm using rsh
t and dense rewards

35: end for
36: # Iterative refinement
37: Collect E expert trajectories Dnew using new policy
38: for allRpred,ψk

∈ E do
39: UpdateRpred,ψk

using new data Dnew
40: end for
41: timestep = t
42: end for

Lemma C.2 (McDiarmid’s Concentration Inequality). If each trajectory’s replacement can change any empirical average
by at most B/N , then for any t > 0:

Pr

(∣∣∣∣∣supf∈F

1

N

N∑
i=1

(f(τi)− E[f ])− E

[
sup
f∈F

1

N

N∑
i=1

(f(τi)− E[f ])

]∣∣∣∣∣ ≥ t
)
≤ 2 exp

(
−2Nt2

B2

)
.

This concentration result allows us to bound the deviation between the random supremum and its expectation, completing
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the pipeline from covering numbers to high-probability uniform generalisation gaps.

C.2. Generalisation of Scalarised Returns

This section shows that generalisation for an arbitrary scalar return implies guarantees for the scalarised components of the
Pareto front.

Corollary C.3. Let Π be a policy class equipped with a metric d(·, ·), and let R(π; τ) ∈ RL denote the vector-valued
return of policy π on trajectory τ . Following Assumption 5.2:

sup
τ
∥R(π; τ)−R(π̃; τ)∥∞ ≤ LR d(π, π̃) for all π, π̃ ∈ Π.

For any weight vector ω ∈ RL define the scalarised return Rω(π; τ) = ω⊤R(π; τ) and letRωΠ be the class of scalarised
returns induced by Π. Then for any ε > 0,

N∞,1(RωΠ, ε) ≤ N∞,1

(
Π, ε/LωR

)
, where LωR := ∥ω∥1 LR.

In particular, when ∥ω∥1 = 1 we have LωR = LR and the scalarised return class has covering numbers no larger than those
of the policy class. Consequently, any complexity reduction obtained by projecting Π to an equivariant subspace (e.g. Πeq)
is inherited by the scalarised objective classRωΠ.

Proof. Fix ω ∈ RL and let π, π̃ ∈ Π. For any trajectory τ ,

∣∣Rω(π; τ)−Rω(π̃; τ)∣∣ = ∣∣ω⊤(R(π; τ)−R(π̃; τ)
)∣∣ ≤ L∑

j=1

|ωj |
∣∣Rj(π; τ)−Rj(π̃; τ)∣∣.

Using maxj |Rj(π; τ)−Rj(π̃; τ)| = ∥R(π; τ)−R(π̃; τ)∥∞, we obtain∣∣Rω(π; τ)−Rω(π̃; τ)∣∣ ≤ ∥ω∥1 ∥R(π; τ)−R(π̃; τ)∥∞.

Taking the supremum over trajectories and applying the vector Lipschitz assumption yields

sup
τ

∣∣Rω(π; τ)−Rω(π̃; τ)∣∣ ≤ ∥ω∥1 LR d(π, π̃) = LωR d(π, π̃).

Thus the scalarised return map π 7→ Rω(π; ·) is Lipschitz with constant LωR = ∥ω∥1LR.

Following Lemma C.8, for any ε > 0,
N∞,1(RωΠ, ε) ≤ N∞,1

(
Π, ε/LωR

)
.

This proves the displayed inequality. The special case ∥ω∥1 = 1 follows immediately. Finally, since the inequality holds for
any policy class Π, replacing Π by the equivariant subspace Πeq shows that any complexity reduction (N (Πeq, ·) is directly
inherited by the scalarised return class.

C.3. Projection to Reflection-Equivariant Subspace

Let the full hypothesis space of policies be Π = {πϕ : ϕ ∈ Φ}, where ϕ represents the neural network parameters and Φ
represents the parameter space. The reflection group G = Z2 = {e, g} acts on the state and action spaces via operators Lg
and Kg , respectively.

We can map any policy to its equivariant counterpart using an orbit averaging operator Q : Π→ Π, defined as:

Q(πϕ)(s) =
1

|G|
∑
h∈G

ρ(h)πϕ(h
−1 · s)

=
1

|G|
∑
h∈G

Kh

(
πϕ(Lh(s))

)
= 1

2 (πϕ(s) +Kg(πϕ(Lg(s)))) . (6)
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Here, ρ(h) is the abstract representation in the action space, and h−1 · s is the abstract action in the state space. In the second
line we replace ρ(h) with the action transformation Kh, and h−1 · s with the state transformation Lh(s). For the reflection
groupG = Z2 = {e, g}, since g = g−1 we may drop the inverse without ambiguity. This operator averages a policy’s output
with its reflected-transformed equivalent. The regulariser, Leq = Es[∥πϕ(Lg(s))−Kg(πϕ(s))∥21], encourages policies to
become fixed points of this operator, thereby learning policies within the subspace of equivariant functions, denoted Πeq.

The operator Q and the subspace Πeq have several crucial properties, which we state in the following lemmas.

Lemma C.4. For any π ∈ Π, the function Q(π) is reflectional equivariant:

Q(π)(Lg(s)) = Kg(Q(π)(s)), ∀s ∈ S.

Proof. By direct calculation:

Q(π)(Lg(s)) = 1
2

(
π(Lg(s)) +Kg(π(Lg(Lg(s))))

)
= 1

2

(
π(Lg(s)) +Kg(π(s))

)
,

KgQ(π)(s) = 1
2

(
Kg(π(s)) +KgKg(π(Lg(s)))

)
= 1

2

(
Kg(π(s)) + π(Lg(s))

)
,

since Kg and Lg are involutions. Thus, the two expressions coincide. Therefore Q(π) is equivariant.

Lemma C.5. The operator Q is a projection, meaning it is idempotent: Q(Q(π)) = Q(π) for any π ∈ Π.

Proof. We apply the operator to its own output:

Q(Q(π))(s) = 1

2
(Q(π)(s) +Kg(Q(π)(Lg(s)))) .

First, evaluating the second term, Q(π)(Lg(s)):

Q(π)(Lg(s)) =
1

2
(π(Lg(s)) +Kg(π(Lg(Lg(s)))))

=
1

2
(π(Lg(s)) +Kg(π(s))) .

Substituting this back:

Q(Q(π))(s) = 1

2

(
Q(π)(s) +Kg

[
1
2 (π(Lg(s)) +Kg(π(s)))

])
=

1

2
Q(π)(s) + 1

4
(Kg(π(Lg(s))) +Kg(Kg(π(s))))

=
1

2
Q(π)(s) + 1

4
(Kg(π(Lg(s))) + π(s))

=
1

2
Q(π)(s) + 1

2

(
1
2 (π(s) +Kg(π(Lg(s))))

)
=

1

2
Q(π)(s) + 1

2
Q(π)(s)

= Q(π)(s).

Thus Q is idempotent.

Lemma C.6. The image of the operatorQ coincides with the set of equivariant policies: Im(Q) = {Q(π) : π ∈ Π} = Πeq.

Proof. We establish set equality by showing inclusion in both directions.

First inclusion (Im(Q) ⊆ Πeq): By Lemma C.4, for any π ∈ Π, the output Q(π) is equivariant. Therefore, every element in
the image of Q belongs to Πeq.
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Second inclusion (Πeq ⊆ Im(Q)): Let πeq be any equivariant policy, so πeq ∈ Πeq. We need to show that πeq can be
expressed as Q(π) for some π ∈ Π.

Since πeq is equivariant, it satisfies πeq(Lg(s)) = Kg(πeq(s)) for all s. Therefore:

Q(πeq)(s) =
1

2
(πeq(s) +Kg(πeq(Lg(s))))

=
1

2
(πeq(s) +Kg(Kg(πeq(s)))) (by equivariance)

=
1

2
(πeq(s) + πeq(s)) (since Kg is an involution)

= πeq(s).

Therefore, πeq = Q(πeq) ∈ Im(Q). This shows that equivariant policies are fixed points of Q, which is consistent with
Lemma C.5. Since every equivariant policy is its own image under Q, we have Πeq ⊆ Im(Q). Combining both inclusions
yields Im(Q) = Πeq. Therefore Q is surjective onto Πeq.

C.4. Reduced Hypothesis Complexity of Reflection-Equivariant Subspace

To prove that the subspace Πeq is less complex, we show that the projectionQ is non-expansive, which implies its image has
a covering number no larger than the original space.
Theorem C.7. The space Πeq has a covering number less than or equal to that of Π. Let N∞,1(F , r) be the covering
number of a function space F under the l∞,1-distance. Then, N∞,1(Πeq, r) ≤ N∞,1(Π, r).

Proof. We show that Q is non-expansive. The l∞,1-distance between two policies πϕ and πθ is

d(πϕ, πθ) = sup
s
∥πϕ(s)− πθ(s)∥1.

The distance between their projections is:

d(Q(πϕ),Q(πθ)) = sup
s

∥∥ 1
2

(
πϕ(s) +Kg(πϕ(Lg(s)))

)
− 1

2

(
πθ(s) +Kg(πθ(Lg(s)))

)∥∥
1

= 1
2 sup

s
∥(πϕ(s)− πθ(s)) +Kg(πϕ(Lg(s))− πθ(Lg(s)))∥1 .

≤ 1
2 sup

s

(
∥πϕ(s)− πθ(s)∥1 + ∥Kg(πϕ(Lg(s))− πθ(Lg(s)))∥1

)
.

≤ 1
2

(
sup
s
∥πϕ(s)− πθ(s)∥1 + sup

s
∥πϕ(Lg(s))− πθ(Lg(s))∥1

)
.

= 1
2

(
d(πϕ, πθ) + d(πϕ, πθ)

)
= d(πϕ, πθ),

where we use the triangle inequality, the fact that Kg is a norm-preserving isometry, ∥Kg(a)∥1 = ∥a∥1, and that Lg is a
bijection, which implies that the supremum over s equals the supremum over Lg(s). Hence Q is non-expansive, and a
non-expansive surjective map cannot increase the covering number. Following Lemma C.6, N (Πeq, r) ≤ N (Π, r).

The following lemma links coverings of the policy class (with metric d) to coverings of the induced return class (supremum
over trajectories). This is the deterministic Lipschitz step that makes the entropy of returns comparable to the entropy of the
policy class.
Lemma C.8. For any policy set P ⊆ Π and any ε > 0,

N∞,1

(
{τ 7→ R(π; τ) : π ∈ P}, ε

)
≤ N∞,1

(
P, ε/LR

)
,

where the left covering number is with respect to the sup-norm over trajectories and the right is with respect to d(·, ·).

Proof. Let {π1, . . . , πM} be an ε/LR-cover of P under d(·, ·). For any π ∈ P choose j with d(π, πj) ≤ ε/LR. Then for
every trajectory τ ,

|R(π; τ)−R(πj ; τ)| ≤ LRd(π, πj) ≤ ε,
so the set {τ 7→ R(πj ; τ)}Mj=1 is an ε-cover of the return-class. Thus, the covering inequality holds.
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C.5. Generalisation of Reflection-Equivariant Subspace

We now prove a high-probability uniform bound over the equivariant class.

Theorem C.9. WithRΠeq
= {τ 7→ R(π; τ) : π ∈ Πeq}, fix any accuracy parameter r ∈ (0, B) and confidence δ ∈ (0, 1).

Then with probability at least 1− δ,

sup
π∈Πeq

|J(π)− ĴN (π)| ≤ C

(∫ B

r

√
logN∞,1(RΠeq

, ε)

N
dε

)
+

8r√
N

+B

√
log(2/δ)

2N
,

where C is an absolute numeric constant, J(π) is the population expected return and ĴN (π) = 1
N

∑N
i=1R(π; τi) is the

empirical return on N i.i.d. episodes τ1, . . . , τN .

Proof. Let F = RΠeq . Following Corollary 5.9, we have:

E
[

sup
f∈RΠeq

∣∣∣ 1N N∑
i=1

(f(τi)− E[f ])
∣∣∣] ≤ 2E

[
RN (RΠeq

)
]
.

Applying Lemma C.1, for any r > 0:

E
[

sup
f∈RΠeq

∣∣∣ 1N N∑
i=1

(f(τi)− E[f ])
∣∣∣] ≤ C (∫ B

r

√
logN∞,1(RΠeq

, ε)

N
dε

)
+

8r√
N
. (7)

Now apply Lemma C.2 to convert the expectation bound into a high-probability statement, with probability at least 1− δ:

sup
f∈RΠeq

∣∣∣ 1N N∑
i=1

(f(τi)− E[f ])
∣∣∣ ≤ E

[
sup

f∈RΠeq

∣∣∣ 1N N∑
i=1

(f(τi)− E[f ])
∣∣∣]+B

√
log(2/δ)

2N
. (8)

Combining Equations 7 and 8 yields the claimed inequality.

C.6. Generalisatisability of PRISM

Lemma C.10. If a policy π satisfies Leq ≤ εeq , then

sup
s
∥∆π(s)∥1 ≤

√
εeq
pmin

.

Consequently, the sup–ℓ1 distance between π and its orbit projection Q(π) satisfies

d(π,Q(π)) = sup
s
∥π(s)−Q(π)(s)∥1 ≤

√
εeq
pmin

.

Proof. Assume the state space has density dµ
ds (s) ≥ pmin on the common support. Let s∗ be such that ∥∆π(s

∗)∥1 =
sups ∥∆π(s)∥1. The expectation is:

εeq = Eµ
[
∥∆π(s)∥21

]
=

∫
∥∆π(s)∥21dµ(s).

For any neighbourhood Bδ(s∗) of s∗:

εeq ≥
∫
Bδ(s∗)

∥∆π(s)∥21dµ(s).

By continuity of ∥∆π(·)∥1 and the density lower bound:∫
Bδ(s∗)

∥∆π(s)∥21dµ(s) ≥ (∥∆π(s
∗)∥1 − ϵ)2

∫
Bδ(s∗)

dµ(s) ≥ (∥∆π(s
∗)∥1 − ϵ)2 pmin · vol(Bδ(s∗)),
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for sufficiently small δ and any ϵ > 0. Taking δ → 0 and ϵ→ 0:

εeq ≥ pmin

(
sup
s
∥∆π(s)∥1

)2

.

Rearranging gives sups ∥∆π(s)∥1 ≤
√

εeq
pmin

.

We can now translate this approximation to a bound on returns and to a covering-number statement.

Theorem C.11. Let ξ := 1
2

√
εeq/pmin. Then for every policy π,

|J(π)− J(Q(π))| ≤ LR · d(π,Q(π)) ≤ LRξ.

Define the approximately reflection-equivariant class Πapprox(εeq) := {π ∈ Π : Leq(π) ≤ εeq}. Then every π ∈
Πapprox(εeq) lies in the sup-ball of radius ξ around Πeq . Consequently, for any target covering radius r > ξ:

N∞,1

(
Πapprox(εeq), r

)
≤ N∞,1

(
Πeq, r − ξ

)
.

Proof. The first claim is that |J(π)− J(Q(π))| ≤ LR · d(π,Q(π)) ≤ LRξ.

First, we establish the LR-Lipschitz property of the expected return J(π) = Eτ [R(π; τ)]. Using the property from that the
return function R is LR-Lipschitz, we have:

|J(π)− J(Q(π))| = |Eτ [R(π; τ)−R(Q(π); τ)]|
≤ Eτ

[
|R(π; τ)−R(Q(π); τ)|

]
≤ Eτ

[
LR · d(π,Q(π))

]
= LR · d(π,Q(π)).

Next, we bound the distance d(π,Q(π)). Using the definition of the projection Q(π), we find the distance from π to its
projection:

d(π,Q(π)) = sup
s
∥π(s)−Q(π)(s)∥1

= sup
s

∥∥π(s)− 1
2 (π(s) +Kg(π(Lg(s))))

∥∥
1

= 1
2 sup

s
∥π(s)−Kg(π(Lg(s)))∥1 .

The term inside the norm is equal to the equivariance mismatch ∆π(s
′) := π(Lg(s

′))−Kg(π(s
′)) evaluated at s′ = Lg(s),

since Lg is an involution.

∆π(Lg(s)) = π(Lg(Lg(s)))−Kg(π(Lg(s))) = π(s)−Kg(π(Lg(s))).

Since Lg is a bijection, sups ∥∆π(Lg(s))∥1 = sups′ ∥∆π(s
′)∥1. By Lemma C.10, this supremum is bounded by ξ.

Therefore:
d(π,Q(π)) =

1

2
sup
s′
∥∆π(s

′)∥1 ≤ ξ.

The second claim is that for any radius r > ξ, we have N∞,1

(
Πapprox(εeq), r

)
≤ N∞,1

(
Πeq, r− ξ

)
. We know that for any

π ∈ Πapprox(εeq), its projection Q(π) ∈ Πeq satisfies d(π,Q(π)) ≤ ξ. This implies that the set Πapprox(εeq) is contained
in a ξ-neighbourhood of Πeq. Let {πj}Mj=1 be a minimal (r − ξ)-cover for Πeq, where M = N∞,1(Πeq, r − ξ). Now,
consider any policy π ∈ Πapprox(εeq). There must exist a centre πj from our cover such that d(Q(π), πj) ≤ r − ξ. By the
triangle inequality, we can bound the distance from π to this centre πj :

d(π, πj) ≤ d(π,Q(π)) + d(Q(π), πj)

≤ ξ + (r − ξ) = r.
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This shows that the set {πj}Mj=1 is an r-cover for Πapprox(εeq). Since we have found a valid cover of size M , the size of the
minimal cover must be no larger:

N∞,1

(
Πapprox(εeq), r

)
≤ N∞,1

(
Πeq, r − ξ

)
.

Theorem C.12. WithRΠeq
= {τ 7→ R(π; τ) : π ∈ Πeq}, fix any accuracy parameter r ∈ (0, B) and confidence δ ∈ (0, 1).

Then with probability at least 1− δ,

sup
π∈Πapprox(εeq)

|J(π)− ĴN (π)| ≤ C

(∫ B

r

√
logN∞,1(RΠeq

, ε)

N
dε

)
+

8r√
N

+B

√
log(2/δ)

2N
+ 2LRξ.

Proof. For any policy π ∈ Πapprox(εeq), we can decompose the generalisation error using the triangle inequality by
introducing its exact-equivariant projection Q(π) ∈ Πeq:

|J(π)− ĴN (π)| ≤ |J(π)− J(Q(π))|+ |J(Q(π))− ĴN (Q(π))|+ |ĴN (Q(π))− ĴN (π)|.

We bound each of the three terms on the right-hand side.

From Theorem C.11, we have:
|J(π)− J(Q(π))| ≤ LR · d(π,Q(π)) ≤ LRξ.

Since the return function R(·; τ) is LR-Lipschitz:

|ĴN (Q(π))− ĴN (π)| =

∣∣∣∣∣ 1N
N∑
i=1

(R(Q(π); τi)−R(π; τi))

∣∣∣∣∣
≤ 1

N

N∑
i=1

|R(Q(π); τi)−R(π; τi)|

≤ 1

N

N∑
i=1

LR · d(π,Q(π)) ≤ LRξ.

The middle term, |J(Q(π)) − ĴN (Q(π))|, is the generalisation error for an exactly equivariant policy. Combining the
bounds, we get:

sup
π∈Πapprox(εeq)

|J(π)− ĴN (π)| ≤ sup
π′∈Πeq

|J(π′)− ĴN (π′)|+ LRγ.

Applying the high-probability bound from Theorem C.9 to the supremum over Πeq yields the final result.

D. Additional Details of Environments
This appendix presents the tables on the environments and how the state space is divided into a symmetric and an asymmetric
part. First Table 3 highlights the differences between environments in dimension sizes. Tables 4, 5, 6, and 7 show the
division for mo-hopper-v5, mo-walker2d-v5, mo-halfcheetah-v5, and mo-swimmer-v5, respectively. The action space is
always divided into an empty set for the asymmetric part, and the complete set for the symmetric part.

Table 3. Considered MuJoCo environments.

State Space Action Space Reward Space

Mo-hopper-v5 S ∈ R11 A ∈ R3 R ∈ R3

Mo-walker2d-v5 S ∈ R17 A ∈ R6 R ∈ R2

Mo-halfcheetah-v5 S ∈ R17 A ∈ R6 R ∈ R2

Mo-swimmer-v5 S ∈ R8 A ∈ R2 R ∈ R2
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Table 4. Reflectional symmetry partition for mo-hopper-v5 observation space.

Index Observation Component Type Symmetry

0 z-coordinate of the torso position Asymmetric
1 angle of the torso angle Asymmetric
2 angle of the thigh joint angle Symmetric
3 angle of the leg joint angle Symmetric
4 angle of the foot joint angle Symmetric
5 velocity of the x-coordinate of the torso velocity Asymmetric
6 velocity of the z-coordinate of the torso velocity Asymmetric
7 angular velocity of the angle of the torso angular velocity Asymmetric
8 angular velocity of the thigh hinge angular velocity Symmetric
9 angular velocity of the leg hinge angular velocity Symmetric
10 angular velocity of the foot hinge angular velocity Symmetric

Table 5. Reflectional symmetry partition for mo-walker2d-v5 observation space.

Index Observation Component Type Symmetry

0 z-coordinate of the torso position Asymmetric
1 angle of the torso angle Asymmetric
2 angle of the thigh joint angle Symmetric
3 angle of the leg joint angle Symmetric
4 angle of the foot joint angle Symmetric
5 angle of the left thigh joint angle Symmetric
6 angle of the left leg joint angle Symmetric
7 angle of the left foot joint angle Symmetric
8 velocity of the x-coordinate of the torso velocity Asymmetric
9 velocity of the z-coordinate of the torso velocity Asymmetric
10 angular velocity of the angle of the torso angular velocity Asymmetric
11 angular velocity of the thigh hinge angular velocity Symmetric
12 angular velocity of the leg hinge angular velocity Symmetric
13 angular velocity of the foot hinge angular velocity Symmetric
14 angular velocity of the left thigh hinge angular velocity Symmetric
15 angular velocity of the left leg hinge angular velocity Symmetric
16 angular velocity of the left foot hinge angular velocity Symmetric

Table 6. Reflectional symmetry partition for mo-halfcheetah-v5 observation space.

Index Observation Component Type Symmetry

0 z-coordinate of the front tip position Asymmetric
1 angle of the front tip angle Asymmetric
2 angle of the back thigh angle Symmetric
3 angle of the back shin angle Symmetric
4 angle of the back foot angle Symmetric
5 angle of the front thigh angle Symmetric
6 angle of the front shin angle Symmetric
7 angle of the front foot angle Symmetric
8 velocity of the x-coordinate of front tip velocity Asymmetric
9 velocity of the z-coordinate of front tip velocity Asymmetric
10 angular velocity of the front tip angular velocity Asymmetric
11 angular velocity of the back thigh angular velocity Symmetric
12 angular velocity of the back shin angular velocity Symmetric
13 angular velocity of the back foot angular velocity Symmetric
14 angular velocity of the front thigh angular velocity Symmetric
15 angular velocity of the front shin angular velocity Symmetric
16 angular velocity of the front foot angular velocity Symmetric
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Table 7. Reflectional symmetry partition for mo-swimmer-v5 observation space.

Index Observation Component Type Symmetry

0 angle of the front tip angle Asymmetric
1 angle of the first rotor angle Symmetric
2 angle of the second rotor angle Symmetric
3 velocity of the tip along the x-axis velocity Asymmetric
4 velocity of the tip along the y-axis velocity Symmetric
5 angular velocity of the front tip angular velocity Asymmetric
6 angular velocity of first rotor angular velocity Symmetric
7 angular velocity of second rotor angular velocity Symmetric

E. Additional Details of Experimental Settings
Evaluation Measures. For the approximated Pareto front, we consider three well-known metrics that investigate the extent
of the approximated front.

First, we consider hypervolume (HV) (Fonseca et al., 2006), which measures the volume of the objective space dominated
by the approximated Pareto front relative to a reference point. A downside of many evaluation measures is that they require
domain knowledge about the true underlying Pareto front, whereas HV only considers a reference point without any a priori
knowledge, making it ideal to assess the volume of the front. The reference point is typically set to the nadir point or slightly
worse, and following Felten et al. (2023), we set it to −100 for all objectives and environments. The HV is defined as
follows:

HV (CS, r) = λ

( ⋃
cs∈CS

x ∈ RL : cs ⪯ x ⪯ r

)
,

where CS = cs1, cs2, . . . , csn is the coverage set, or the Pareto front approximation, r ∈ RL is the reference point,
cs ⪯ x means csi ≤ xi for all objectives i = 1, . . . , L, and λ(·) denotes the Lebesgue measure. Yet, hypervolume values
are difficult to interpret, as they do not have a direct link to any notion of value or utility (Hayes et al., 2022).

As such, we also consider the Expected Utility Metric (EUM) (Zintgraf et al., 2015), which computes the expected maximum
utility across different preference weight vectors, and is defined as follows:

EUM(CS,W) =
1

|W|
∑
ω∈W

max
cs∈CS

U(ω, cs),

whereW = {ω1,ω2, . . . ,ωk} is a set of weight vectors, |W| is the cardinality of the weight set, U(ω, cs) is the utility
function, which is set to U(ω, s) = ω · cs =

∑L
i=1 ωi · csi.

To specifically assess performance with respect to distributional preferences, we also consider one metric designed to
evaluate the optimality of the entire return distribution associated with the learned policies (Cai et al., 2023).

To be precise, we consider the Variance Objective (VO), which evaluates how well the policy set can balance the trade-off
between maximising expected returns and minimising their variance. A set of M random preference vectors is generated,
where each vector specifies a different weighting between the expected return and its standard deviation for each objective.
The satisfaction score u(pi, πj) for a policy πj under preference pi is a weighted sum of the expected return E[Z(πj)]
and the negative standard deviation −

√
Var[Z(πj)]. The final metric is the mean score over these preferences, rewarding

policies that achieve high expected returns with low variance:

VO(Π, {pi}Mi=1) =
1

M

M∑
i=1

max
πj∈Π

u(pi, πj).

Hyperparameters. Due to time, computational limitations, and the excessive number of hyperparameters, we do not
perform an extensive hyperparameter tuning process. Below are the used hyperparameters. All hyperparameters that are not
mentioned below are set to their default value.

The probability of releasing sparse rewards prel is always set to a one-hot vector, where sparsity is imposed on the reward
dimension related to moving forward. Since the main goal is to move forward, imposing sparsity on this channel should
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make it a more difficult task for the reward shaping model. Furthermore, we deal with extreme heterogeneous sparsity,
where most channels exhibit regular rewards, but one channel only releases a reward at the end of an episode, making it
more difficult for the model to link certain states and actions to the observed cumulative reward.

The hyperparameters in Table 8 for ReSymNet are identical for each environment. The advantage of using the same
hyperparameters for each environment is that if one configuration performs well everywhere, it could indicate that the
proposed method is inherently stable, especially given the noted diversity between the considered environments. However,
this does come at a cost of potentially suboptimal performance per environment.

Table 8. Hyperparameters for ReSymNet.

PRISM

Initial collection N 1000
Expert collection E 1000
Number of refinements IR 2
Timesteps per cycle M 100,000
Epochs 1000
Learning rate 0.005
Learning rate scheduler Exponential
Learning rate decay 0.99
Ensemble size |E| 3
Hidden dimension 256
Dropout 0.3
Initialisation Kaiman (He et al., 2015)
Validation split 0.2
Patience 20
Batch size 32

The hyperparameter controlling the symmetry loss differs per environment, since some environments require strict equivari-
ance, whereas others require a more flexible approach. Table 9 shows the used values.

Table 9. SymReg hyperparameter.

Mo-hopper-v5 Mo-walker2d-v5 Mo-halfcheetah-v5 Mo-swimmer-v5

λ 0.01 1 0.01 0.005

F. Pareto Fronts
Figure 6 shows the approximated Pareto fronts. The results demonstrate that shaped rewards yield superior performance,
covering a wider and more optimal range of the objective space compared to dense and sparse rewards.
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Figure 6. The approximated Pareto front for dense rewards (blue dots), sparse rewards (orange dots), and shaped rewards (green dots).
Sparsity is imposed on the first reward objective.

25



PRISM: Parallel Reward Integration with Symmetry for MORL

G. Ablation Study
Tables 10 and 11 report the obtained values for the ablation study. Results are again averaged over ten trials, similar to the
main experiments.

Table 10. PRISM ablation study results. We report the average hypervolume (HV), Expected Utility Metric (EUM), and Variance Objective (VO) over
10 trials, with the standard error shown in grey. w/o is the abbreviation of without. The largest values are in bold font.

Environment Metric PRISM w/o residual w/o dense rewards w/o ensemble w/o refinement w/o loss

Mo-hopper-v5
HV (×107) 1.58± 0.05 1.29± 0.09 1.38± 0.11 1.38± 0.08 1.55± 0.04 1.42± 0.07
EUM 147.43± 2.61 128.40± 6.06 134.67± 6.89 135.28± 4.91 145.89± 2.73 137.85± 4.22
VO 66.66± 1.40 58.61± 2.71 61.21± 3.03 61.51± 2.19 66.54± 1.34 62.71± 1.83

Mo-walker2d-v5
HV (×104) 4.77± 0.07 4.65± 0.11 4.66± 0.06 4.60± 0.08 4.60± 0.09 4.58± 0.13
EUM 120.43± 1.64 114.33± 2.48 116.83± 1.65 113.79± 2.02 114.98± 2.84 112.77± 3.01
VO 59.35± 0.80 56.46± 1.21 57.67± 0.73 56.19± 0.97 57.03± 1.42 55.59± 1.44

Mo-halfcheetah-v5
HV (×104) 2.25± 0.18 1.95± 0.20 2.08± 0.21 1.91± 0.19 2.23± 0.18 1.90± 0.19
EUM 89.94± 15.33 73.06± 16.57 82.24± 16.97 81.60± 17.65 92.68± 14.79 71.12± 16.91
VO 40.72± 7.02 32.99± 7.65 37.31± 7.99 36.76± 8.06 42.28± 6.85 32.12± 7.75

Mo-swimmer-v5
HV (×104) 1.21± 0.00 1.21± 0.00 1.20± 0.00 1.20± 0.00 1.21± 0.00 1.20± 0.00
EUM 9.44± 0.14 9.39± 0.15 9.07± 0.11 9.25± 0.13 9.46± 0.13 9.35± 0.14
VO 4.24± 0.07 4.20± 0.08 4.09± 0.05 4.15± 0.08 4.24± 0.07 4.24± 0.07

Table 11. ReSymNet ablation study results. We report the average hyper-
volume (HV), Expected Utility Metric (EUM), and Variance Objective
(VO) over 10 trials, with the standard error shown in grey. w/o is the
abbreviation of without.

Environment Metric uniform random

Mo-hopper-v5
HV (×107) 1.38± 0.08 0.49± 0.06
EUM 135.19± 5.30 65.22± 6.63
VO 63.90± 2.34 29.62± 3.68

Mo-walker2d-v5
HV (×104) 4.67± 0.07 1.18± 0.10
EUM 116.72± 2.11 16.52± 4.98
VO 56.22± 1.01 3.77± 2.46

Mo-halfcheetah-v5
HV (×104) 0.98± 0.00 0.78± 0.05
EUM -1.34± 0.39 -10.52± 2.67
VO -0.85± 0.20 -6.51± 1.48

Mo-swimmer-v5
HV (×104) 1.09± 0.01 1.10± 0.02
EUM 4.37± 0.69 3.75± 0.87
VO 1.56± 0.33 1.06± 0.40
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H. Generalisability
H.1. Sparsity on Other Objectives

We further investigate the robustness of PRISM by inverting the sparsity setting: we maintain the forward velocity reward as
dense but make the control cost objective sparse. Table 12 shows that, without hyperparameter tuning, PRISM handles this
problem much better than the baselines.

Table 12. Experimental results on the control cost objective. We report the average hyper-
volume (HV), Expected Utility Metric (EUM), and Variance Objective (VO) over 10 trials,
with the standard error shown in grey. The largest (best) values are in bold font.

Environment Metric Oracle Baseline PRISM

Mo-hopper-v5
HV (×107) 1.30± 0.13 1.19± 0.10 1.51± 0.11
EUM 129.04± 7.96 124.82± 7.21 142.89± 7.38
VO 59.07± 3.45 56.21± 3.20 67.58± 3.31

Mo-walker2d-v5
HV (×104) 4.21± 0.11 3.16± 0.13 4.59± 0.14
EUM 107.58± 2.86 85.95± 3.27 114.62± 2.80
VO 53.22± 1.39 41.29± 1.49 54.84± 1.25

Mo-halfcheetah-v5
HV (×104) 1.70± 0.20 0.00± 0.00 1.72± 0.19
EUM 81.29± 21.85 -101.49± 3.23 76.50± 20.85
VO 36.84± 10.06 -56.26± 1.63 31.27± 8.68

Mo-swimmer-v5
HV (×104) 1.21± 0.00 1.05± 0.02 1.21± 0.01
EUM 9.41± 0.12 1.50± 1.00 9.32± 0.19
VO 4.22± 0.08 -0.61± 0.68 3.95± 0.08

For mo-hopper-v5, PRISM improves HV by 16% over the oracle (1.51× 107 compared to 1.30× 107) and 27% over the
baseline. Similar gains are observed for mo-walker2d-v5, where PRISM achieves a 9% HV improvement over the oracle
and 45% over the baseline. Notably, in mo-halfcheetah-v5, the baseline suffers a collapse (HV of 0.00), whereas PRISM
recovers the performance to exceed the oracle (1.72× 104 against 1.70× 104). These improvements imply that PRISM
effectively reconstructs the dense penalty signal, preventing the agent from exploiting the delay to maximise velocity at the
cost of extreme energy inefficiency.

Improvements in EUM follow the same trend, with mo-walker2d-v5 showing an increase of roughly 33% compared to the
baseline (114.62 vs 85.95). On distributional metrics, PRISM delivers more consistent performance than the baseline. In
mo-swimmer-v5, the baseline’s VO drops to −0.61, indicating high instability, whereas PRISM achieves 3.95, comparable
to the oracle (4.22). These gains are crucial because they indicate that PRISM produces Pareto fronts that are not only
high-performing but also balanced and robust, effectively mitigating the high-variance behaviour from the baseline.

H.2. Sensitivity to Sparsity

Figure 7 demonstrates that PRISM maintains robust performance across varying levels of reward sparsity. While performance
is generally consistent, we observe minor fluctuations at intermediate values (e.g., prel = 0.2 in mo-hopper-v5 and mo-
walker2d-v5). Two key factors explain this behaviour: (1) PRISM was hyperparameter-tuned specifically for the extreme
sparsity setting (prel = 0), which is the most challenging MORL scenario. We utilised a fixed set of hyperparameters
across all experiments to demonstrate method stability rather than optimising for each sparsity level, and (2) increasing
prel increases the number of available reward signals (data points) per episode. Since ReSymNet was calibrated for the
data-scarce sparse setting, the increase of supervision targets at higher prel levels changes optimisation dynamics, leading to
temporary instability. Despite these factors, PRISM consistently recovers high performance, proving its capability to handle
heterogeneous reward structures without requiring specific tuning for denser environments.

H.3. Sensitivity to MORL Algorithms

To demonstrate that PRISM is a model-agnostic framework not limited to specific architectures, we evaluated its performance
using GPI-PD (Generalised Policy Improvement with Linear Dynamics) (Alegre et al., 2023) as an alternative backbone
to CAPQL. Table 13 confirms that PRISM remains highly effective, consistently outperforming the sparse baseline and

27



PRISM: Parallel Reward Integration with Symmetry for MORL

0.2 0.4 0.6 0.8 1.0
Reward Release Probability (p)

14000K

14500K

15000K

15500K

16000K

Hy
pe

rv
ol

um
e

[p,1.0,1.0]

(a) Mo-hopper-v5

0.80.60.40.20.0
Reward Release Probability (p)

43K

44K

45K

46K

47K

48K

49K

Hy
pe

rv
ol

um
e

[p,1.0]

(b) Mo-walker2d-v5

0.80.60.40.20.0
Reward Release Probability (p)

12K

15K

18K

20K

22K

25K

28K

Hy
pe

rv
ol

um
e

[p,1.0]

(c) Mo-halfcheetah-v5

0.80.60.40.20.0
Reward Release Probability (p)

11950

12000

12050

12100

12150

12200

12250

Hy
pe

rv
ol

um
e

[p,1.0]

(d) Mo-swimmer-v5

Figure 7. The obtained hypervolume for various levels of sparsity for PRISM.

obtaining near-oracle performance.

Table 13. Experimental results of GPI-PD. We report the average hypervolume (HV),
Expected Utility Metric (EUM), and Variance Objective (VO) over 10 trials, with the
standard error shown in grey. The largest (best) values are in bold font.

Environment Metric Oracle Baseline PRISM

Mo-hopper-v5
HV (×107) 1.65± 0.10 0.67± 0.04 1.65± 0.07
EUM 151.45± 5.87 85.87± 3.17 148.19± 4.26
VO 72.26± 2.90 41.21± 1.44 70.24± 2.51

Mo-walker2d-v5
HV (×104) 5.93± 0.10 3.20± 0.23 5.61± 0.10
EUM 141.88± 2.38 76.41± 6.47 132.67± 2.26
VO 67.63± 1.17 35.64± 3.91 63.19± 1.75

Mo-halfcheetah-v5
HV (×104) 1.80± 0.22 1.00± 0.02 2.24± 0.16
EUM 164.75± 14.21 -1.31± 0.54 99.89± 8.06
VO 73.90± 7.05 -1.14± 0.31 40.74± 5.17

Mo-swimmer-v5
HV (×104) 1.23± 0.01 1.12± 0.01 1.22± 0.00
EUM 9.68± 0.17 5.17± 0.58 9.56± 0.13
VO 4.23± 0.14 2.18± 0.39 4.37± 0.18

In mo-hopper-v5, PRISM achieves an HV of 1.65 × 107, matching the oracle exactly and far exceeding the baseline
(0.67× 107). This trend of near-perfect recovery is consistent across mo-walker2d-v5 and mo-swimmer-v5. This indicates
that the shaped rewards generated by ReSymNet are robust enough to guide different policy optimisation mechanisms
effectively. In mo-halfcheetah-v5, PRISM achieves a significantly higher HV (2.24) compared to the oracle (1.80).

Notably, these results were obtained with minimal hyperparameter tuning due to computational constraints. While this
lack of fine-tuning explains the slight gap in EUM/VO metrics for mo-halfcheetah-v5 compared to the oracle, the method’s
ability to achieve such strong results with a completely different backbone highlights PRISM’s inherent stability and
generalisability.

I. Declaration on Large Language Models
Large Language Models (LLMs) were used for (1) polishing the wording of the manuscript for clarity and readability, (2)
brainstorming about algorithm names and their abbreviations, and (3) searching for algorithms for consideration in the
preliminary stage.
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