
1

Efficient Counterfactual Reasoning in ProbLog via
Single World Intervention Programs

SAIMUN HABIB*

(e-mail: S.Habib-1@ed.ac.uk)

VAISHAK BELLE*

(e-mail: vbelle@ed.ac.uk)

FENGXIANG HE*

(e-mail: F.He@ed.ac.uk)
*University of Edinburgh, Edinburgh, United Kingdom

submitted xx xx xxxx; revised xx xx xxxx; accepted xx xx xxxx

Abstract

Probabilistic Logic Programming (PLP) languages, like ProbLog, naturally support reasoning
under uncertainty, while maintaining a declarative and interpretable framework. Meanwhile,
counterfactual reasoning (i.e., answering “what if” questions) is critical for ensuring AI systems
are robust and trustworthy; however, integrating this capability into PLP can be computation-
ally prohibitive and unstable in accuracy. This paper addresses this challenge, by proposing
an efficient program transformation for counterfactuals as Single World Intervention Programs
(SWIPs) in ProbLog. By systematically splitting ProbLog clauses to observed and fixed compo-
nents relevant to a counterfactual, we create a transformed program that (1) does not asymp-
totically exceed the computational complexity of existing methods, and is strictly smaller in
common cases, and (2) reduces counterfactual reasoning to marginal inference over a simpler
program. We formally prove the correctness of our approach, which relies on a weaker set in-
dependence assumptions and is consistent with conditional independencies, showing the result-
ing marginal probabilities match the counterfactual distributions of the underlying Structural
Causal Model in wide domains. Our method achieves a 35% reduction in inference time versus
existing methods in extensive experiments. This work makes complex counterfactual reasoning
more computationally tractable and reliable, providing a crucial step towards developing more
robust and explainable AI systems. The code is at https://github.com/EVIEHub/swip.

KEYWORDS: counterfactual reasoning, probabilistic logic programming, ProbLog, causality,
single world intervention graph, structural causal models

1 Introduction

Among causal queries, counterfactual questions of the form “What if X had been differ-

ent?” are crucial for explanation, diagnosis, credit assignment, and decision making [16,

9]. To situate its value, it is helpful to distinguish probabilistic, causal, and counterfac-

tual modeling along Pearl’s “ladder of causality” [15]. While probabilistic models describe

associations, Structural Causal Models (SCMs) additionally specify directed functional

relationships between variables with exogenous noise and how these relationships change

mailto:S.Habib-1@ed.ac.uk
mailto:vbelle@ed.ac.uk
mailto:F.He@ed.ac.uk
https://github.com/EVIEHub/swip

2 Habib et al.

under interventions [15]. This hierarchy of associational, interventional, and counterfac-

tual queries captures increasingly expressive forms of reasoning, and in particular, the

capacity for counterfactual reasoning is a critical capability for artificial intelligence sys-

tems to discern effects of alternative choices by explicitly relating the actual world to

hypothetical variants of a causal model’s structure under intervention to explain the

observation(s) produced by the underlying generative mechanisms in either world [8, 6].

Why PLP? Counterfactuals in SCMs traditionally followed a procedure of abduction,

action, and prediction [15], but Hopkins and Pearl argue SCMs become unwieldy in

realistic domains as they lack first-order expressivity over entity and attribute relation-

als, quantified rules, and temporally structured actions [10]. For example, the classic

“two-riflemen” scenario [15] requires a model that distinguishes multiple agents, possible

misfires, and a disjunctive causal mechanism. A propositional encoding must enumer-

ate each marksman A and B taking aim at a target and whether they hit the target

separately, whereas a relational encoding expresses the causal mechanism compactly:

hits(Target) :- fired(Soldier,Target).

The broader lesson is that causal models benefit from symbolic structure, and symbolic

systems benefit from principled causal semantics [10]. Probabilistic Logic Programming

(PLP) sits naturally at this intersection. It provides explicit symbolic mechanisms as in-

terpretable rules describing how entities and relations interact, combined with probabilis-

tic uncertainty. Such rules (e.g., causes(Smoking,Cancer), infects(P1,P2)) support

recursion, quantification, and relational generalization [22, 21]. However, strictly speak-

ing PLP languages were not designed for causal inference [15, 21, 22, 3]. These languages

lack a do-operator, formal intervention semantics, and tools for causal identification.

A simple ProbLog program illustrates this gap:

0.3::lifestyle(alice)

0.3::smokes(alice).

0.6::genetic_risk(alice).

cancer(alice) :- smokes(alice), genetic_risk(alice).

Under distribution semantics, this program defines a joint probability over

smokes(alice), genetic risk(alice), and cancer(alice) with logical dependencies

between them. Conditioning on smokes(alice)=false updates beliefs on Alice’s likeli-

hood of cancer but does not implement the causal intervention (smokes(alice)=false),

which requires deleting the generative mechanism between smoking and cancer. This dif-

ference between conditioning and intervening marks the conceptual boundary between

probabilistic and causal interpretation.

Recognizing this limitation, several PLP languages extend logic programming

with causal meaning. Logic Program Annotated Disjunctions (LPADs), [23], Causal

Probabilistic-logic (CP-logic) [22], and ProbLog [4] introduce probabilistic choices, and

CP-logic interprets rules as probabilistic causal laws. Its intervention semantics disable

or modify such laws, aligning CP-logic with SCM-style reasoning. However, comput-

ing counterfactuals still follows the abduction, action, prediction procedure and requires

storing the full posterior P (U | E = e) over exogenous causes U given the evidence or

observations e .

Single World Intervention Programs 3

To address this, another line of work adapts the Twin Network construction from

SCMs to ProbLog [1, 11]. Counterfactual inference is reduced to ordinary probabilistic

inference by duplicating the program into factual and counterfactual copies linked by

shared exogenous variables avoiding storing P (U | E = e) and doing intervention and

inference at once to compute P (Y |do(X = x), E = e). While convenient, this approach

suffers from (i) exponentially many cross-world independence assumptions [17, 20], and

(ii) demonstrable failures of these assumptions in important causal structures. In a prac-

tical sense, it is also limited for first-order relational models as it doubles program size,

increasing compilation cost.

1.1 Our Contributions

In this work, we introduce Single-World Intervention Programs (SWIPs), a new method

for counterfactual reasoning in ProbLog inspired by the Single-World Intervention Graph

(SWIG) framework [17]. Rather than duplicating the model, SWIPs perform a semantics-

preserving transformation of the program itself.

Returning to the earlier example, to compute P (cancer(alice) |
(smokes(alice)=0)), SWIP removes the probabilistic fact 0.3::smokes(alice).,

inserts the deterministic fact smokes(alice)=false, and manipulating the rule for

cancer(alice) by removing its dependence on the original smoking mechanism

while making it reliant on the intervention. More generally, given (X=x), the SWIP

transformation deletes all clauses defining X, inserts the deterministic fact(s) asserting

X := x in place of X, and eliminates redundant or unreachable rules through structural

simplification.

The resulting SWIP is a simplified ProbLog program whose distribution matches the

counterfactual semantics of the corresponding SCM. SWIPs offer practical advantages.

Across extensive synthetic experiments, SWIPs produce significantly smaller unfolded

programs and reduce compilation and inference time by approximately 35% relative to

Twin Networks. Since SWIPs simplify rather than duplicate rule structure, knowledge-

compilation backends (d-DNNF, SHARPSAT) exploit the reduced treewidth directly [5].

We prove that (1) for any SCM encodable in ProbLog, SWIPs reproduce exactly the

interventional and counterfactual distributions of the SCM under standard assumptions

of unique supported models and faithful SCM encodings; (2) the SWIP approach is

computationally less expensive than the Twin Network approach; and (3) the grounded

SWIP semantics coincide with CP-logic’s intervention semantics, unifying event-based

and equation-based causal interpretations.

To our knowledge, SWIPs provide the first single-world, SCM-faithful counterfactual

semantics inside ProbLog that avoid cross-world assumptions while retaining the expres-

sive relational structure of logic programming.

2 Preliminaries

2.1 Causal Models and Counterfactuals

A Structural Causal Model (SCM)M is defined as a tuple ⟨U,V,F⟩, where U are mu-

tually independent exogenous variables, V are endogenous variables, and F = {fV }V ∈V

4 Habib et al.

L D

HG

Fig. 1: A causal diagram with variables L, D, G, and H. The corresponding SCM declares

H as a function of A, B and C, D as a function of G and L, and L as functions of G.

is a set of structural equations of the form V := fV (pa(V), UV), with pa(V) ⊆ V and

UV ⊆ U. Each SCM induces a directed acyclic graph (DAG) G encoding the causal

dependencies among variables [15]. Figure 1 depicts a causal model between genetics G,

lifestyle L, diet D, and health H while omitting the implicit exogenous noise variables

for simplicity.

An intervention replaces the equations for a subset X ⊆ V with constant assignments

X := x, producing a modified model Mx. The induced post-interventional distribution

is P (v | do(X := x)) =
∏

Vi∈V\X P (vi | pa(Vi)) · I[x] inMx. Counterfactual queries,

P (Y | do(X := x),E=e), ask about outcomes under hypothetical interventions given

observed evidence. Their computation typically follows the abduction, action, and pre-

diction steps of [1]. Abduction requires storing the entire distribution of PM(U|E=e),

while action manipulates the model M into the intervened distribution Mx for some

assignment X := x, and prediction finally calculates PMx(Y|E = e) [15]. [1, 11], but

The twin network circumvents the abduction step and combines action and prediction

by taking M and creating MK given by the tuple ⟨U,V′ ∪V,F⟩. It sets V′ = V and

uses it to create a factual and counterfactual set of equations with shared exogeneity

defined as

X :=

{
fX(pa(X), UX), X ∈ V

fX(pa(X)′, UX), X ∈ V′

where pa(X)′ = {X ′|X ∈ pa(X)}. Interventions are set on the variables in V′, ie. X′ := x

and we have:

PM(· |E = e, do(X := x)) = PMK
x
(· |E = e)

Alternatively, the Single-World Intervention Graph (SWIG) formalism provides a con-

venient graphical encoding of the abduction, action, and prediction steps used to evalu-

ate counterfactuals [17, 15]. Given a graph G encoding an SCMM and an intervention

do(X := x), a SWIG is obtained by splitting each intervened node X ∈ X into two:

a factual copy X that receives incoming edges from pa(X) and a fixed counterfactual

copy X ′ := x with outgoing edges to its original children. Exogenous variables remain

as is, yielding a single graph that represents factual and counterfactual variables within

one world while avoiding ad hoc duplication of independent noise sources. Following

Single World Intervention Programs 5

standard graphical separation criteria, the SWIG is a complete independence oracle and

determines which counterfactual queries are identified by observed data [17].

2.2 ProbLog

ProbLog is a probabilistic logic programming language with distribution semantics [4]. A

ProbLog program P is a pair (LP(P),Facts(P)). Facts(P) is a set of probabilistic facts

of the form π :: a, where a is a ground atom from the set of external propositions E(B)

and π ∈ [0, 1] is its probability. These facts are assumed to be mutually independent and

correspond to the exogenous variables U in an SCM. LP(P) is a set of logical clauses

(rules) of the form h← b1, . . . , bn, where h is an internal proposition from I(P) and the

body {b1, . . . , bn} is a set of literals. These rules correspond to the structural equations

F in an SCM.

The semantics of P define a probability distribution πP over possible worlds ω, where a

world is a complete truth assignment to all ground atoms in B = J(B)∪E(B). Formally,

the probability of a world ω is πP(ω) =
∏

ai∈ω πi

∏
ai /∈ω

(
1−πi

)
for all probabilistic facts

ai ∈ Facts(P), i.e., the product of the probabilities of all true probabilistic facts and

the complements of those that are false. The probability of a query ϕ is the sum of the

probabilities of all worlds in which ϕ is true[4]:

πP(ϕ) =
∑
ω|=ϕ

πP(ω).

For a ProbLog program to correctly represent an SCM, it must have unique supported

models, meaning that for any truth assignment to the external propositions E(P), the

logical rules in LP(P) must yield a single, unique truth assignment for all internal propo-

sitions I(P). A sufficient condition for this property is that the dependency graph of

LP(P) is acyclic [12].

Within ProbLog, Pearl’s d-separation reasoning for independence and identifiability

can be implemented declaratively as a meta-interpreter that encodes both the syntactic

rules of do-calculus and the associated independence checks as higher-order logic predi-

cates [19]. This enables automated symbolic reasoning about causal identifiability directly

within the ProbLog environment.

3 Challenges of the Twin Network in ProbLog

This section analyses a prevailing method for computing counterfactuals in ProbLog

through a program transformation that constructs a Twin Network [12]. This approach

operationalizes the SCM framework by creating a new ProbLog program, T (P), that
explicitly represents both a factual and a counterfactual world. The transformation sys-

tematically duplicates all internal propositions I(P) and their defining rules in LP(P),
while the external propositions in Facts(P) remain shared between the two worlds. This

sharing of exogenous variables is the mechanism that relates the factual and counterfac-

tual outcomes and the full procedure is detailed in Algorithm 1.

This approach, however, implicitly relies on a strong and untestable cross-world as-

sumption of all of these exogenous variables being independent of one another and in

fact, the number of assumptions required grows at a doubly exponential rate [20, 17].

6 Habib et al.

The duplication of the entire program by nature introduces higher compute cost for pro-

gram compilation in proportion to the the program size and length of clauses in the

program. In the worst case, it is Θ(|P| · Lmax)

ϵL

L

ϵG

G ϵD

D

ϵH

H

(a) Original causal model

ϵG

ϵL

ϵD

ϵH

G

L

D

H

G∗

L∗

D∗

H∗

(b) Twin network with counterfactual vari-
ables

Fig. 2: Side-by-side comparison of (a) the original structural causal model and (b) its

corresponding twin network construction.

Theorem 3.1 (Twin Network Transformation Complexity)

Let P = (LP(P),Facts(P)) be a ProbLog program with |P| = |LP(P)| + |Facts(P)|
denoting the total number of clauses and facts. Let Lmax be the maximum body length of

any clause in LP(P). Then the Twin Network transformation T (P) following Algorithm

2 from Kiesel et al. (2023) has complexity Θ(|P| · Lmax).

An intervention do(X := x) is applied to the program by modifying the rules in the

counterfactual part of the program. Subsequently, a counterfactual query PMK
x
(Y |E = e)

is evaluated by computing a standard marginal probability on the transformed program

T (P), as shown in Algorithm 2. The inference complexity itself is determined by an

algorithm, such as knowledge compilation, whose runtime is given by a function g(w(G))

for a program with primal graph G of treewidth given by w(G) [5]. A necessary condition

for the validity of this approach for a counterfactual queries is the original program P

has unique supported models, for which a sufficient condition is an acyclic underlying

logic program LP(P).

Single World Intervention Programs 7

Algorithm 1 ConstructTwinNetwork(P, do(X := x))

Require: ProbLog program P = (LP(P),Facts(P)); intervention X := x

Ensure: Twin Network program T (P)
1: Initialize T (P)← ∅
2: for all p :: a ∈ Facts(P) do
3: if a ∈ X then

4: Add 1.0 :: a and 0.0 :: a′ to T (P)
5: else

6: Add p :: a and p :: a′ to T (P)
7: end if

8: end for

9: for all h← b1, . . . , bn ∈ LP(P) do
10: if h ̸∈ X then

11: Add h← b1, . . . , bn to T (P)
12: Add h′ ← b′1, . . . , b

′
n to T (P)

13: end if

14: end for

15: return T (P)

Algorithm 2 EvaluateTwinNetworkQuery(P, T (P),X := x,E = e, ϕ)

Require: Original program P, Twin Network T (P), intervention X := x, evidence

E = e, query formula ϕ

Ensure: Counterfactual probability πP(ϕx|E = e)

1: p1 ← πP(E = e)

2: p2 ← πT (P)(ϕ
′ ∧E = e)

3: return p2/p1

4 Single World Intervention Programs

To address both limitations, we introduce our Single-World Intervention Fact Transfor-

mation (SWIFT) algorithm detailed in Algorithm 3 to produce a Single World Interven-

tion Program (SWIP) fit for a counterfactual query given an intervention and evidence.

The SWIFT algorithm operationalizes the ”graph surgery” of Single-World Interven-

tion Graphs [17], shown in Figure 3, at the level of logical rules. Because rules interact

through relational, quantified, and recursive dependencies, altering or deleting a clause

may change the support, reachability, and logical structure of downstream atoms. The

Twin Network approach avoids this by model duplication, at the cost of additional as-

sumptions and computational overhead. Instead, the SWIFT algorithm, provides a rule

rewriting procedure that preserves the deterministic closure implied by existing rules and

unique supported model requirement by the distribution semantics to produce a program

semantically equivalent to the intervened Structural Causal Model.

To distinguish interventiosn in the Twin Network setting and the SWIP setting, we use

the fix(X := x) notation. This procedure first removes all clauses from LP(P) that define
the intervened propositions in X. This step corresponds to severing the causal arrows

8 Habib et al.

ϵL

L L = l

ϵG

G ϵD

D

ϵH

H

Fig. 3: SWIG where intervention fix(L = l) is acted

into the intervened nodes. Second, it iterates through the remaining rules and replaces

any occurrence of an intervened atom Xi ∈ X in a rule body with a new, unique atom

Xi,fixed that represents its fixed value. This corresponds to redirecting the outgoing

causal arrows from the original random node to the new fixed-value node. Finally, it

adds deterministic facts to assert the values of these new fixed atoms. In contrast to

constructing T (P), the complexity of SWIFT is at worst proportional to the program

size, ie. when an intervened variable appears as an atom in every rule, while for T (P),
it is always proportional. The resulting SWIP, S(P), is a valid ProbLog program that

directly represents the counterfactual world.

Single World Intervention Programs 9

Algorithm 3 SWIFT(P, fix(X := x))

Require: ProbLog program P = (LP(P),Facts(P)); intervention X := x

Ensure: Single-World Intervention Program S(P)
1: Initialize S(P)← Facts(P)
2: Let LP−X ← C ∈ LP(P) : head(C) ̸∈ X

3: for all C = (h← b1, . . . , bn) ∈ LPX do

4: Let B′ = b′1, . . . , b
′
n be a new set of body literals

5: for all bj ∈ b1, . . . , bn do

6: Let a be the atom of the literal bj .

7: if a ∈ X then

8: b′j ← literal corresponding to afixed(xa)with the same sign as bj .

9: else

10: b′j ← bj
11: end if

12: end for

13: Add the rewritten rule h← B′ to S(P)
14: end for

15: for all Xi ∈ X do

16: Add the fact 1.0 :: Xi,fixed(xi) to S(P)
17: end for

18: return S(P)

Theorem 4.1 (SWIP Transformation Complexity)

Let P = (LP(P),Facts(P)) be a ProbLog program, and let |P| = |LP(P)| + |Facts(P)|
denote the total number of clauses and facts. Let Lmax be the maximum body length

of any clause in LP(P). Then the SWIP S(P) following Algorithm 3 has complexity

O(|P| · Lmax).

As a corollary, it immediately follows

Corollary 4.1.1 (Asymptotic Advantage of SWIFT over Twin Networks)

Let P = (LP(P),Facts(P)) be a ProbLog program of size |P|, and let Lmax be the

maximum body length of any clause in LP(P). Let S(P) be the Single-World Intervention

Program produced by the SWIFT transformation, and let T (P) be the Twin Network

transformation of P.
Then the time complexity of constructing S(P) is O(|P| · Lmax), while the time com-

plexity of constructing T (P) is Θ(|P| · Lmax). Moreover, S(P) is never asymptotically

larger than T (P), and is strictly smaller whenever at least one intervened atom does not

appear in all clause bodies.

That is to say, while asymptotically equivalent in the worst case, SWIPs avoid un-

conditional duplication and are strictly smaller for sparse interventions. This directly

translates to query speed ups in the general case, and in the worst case, is the same cost

as querying over T (P). As shown in Algorithm 4, evidence is incorporated by adding facts

to S(P), and the counterfactual probability is obtained via standard marginal inference

on this final program.

10 Habib et al.

Algorithm 4 EvaluateSWIPQuery(S(P),E = e, ϕ)

Require: SWIP S(P); evidence E = e; counterfactual query formula ϕ

Ensure: Counterfactual probability πS(P)(ϕ|E = e)

1: p1 ← πS(P)(E = e)

2: p2 ← πS(P)(ϕ ∧E = e)

3: return p2/p1

Theorem 4.2 (Inference Complexity Comparison)

Let g(·) be the complexity of some inference algorithm. Then inference complexity for

querying over S(P) vs T (P) is

O(g(w(S(P)))) ≤ O(g(w(T (P))))

Because our transformation is proven to yield a program whose semantics are equiva-

lent to the counterfactual distribution of the underlying SCM, it inherits the established

consistency with other causal formalisms like CP-logic and LPADs [12, 22, 23].

Theorem 4.3 (Correctness of SWIP-Based Counterfactual Queries)

Let P be a ProbLog program encoding a structural causal model M with unique sup-

ported models. Let S(P) = SWIFT(P, fix(X := x)) be the SWIG-transformed program

and let Se(P) be the program augmented with evidence E = e. Then for any query ϕ

under intervention x,

πSe(P)(ϕ) = πM(ϕx|E = e).

These theorems suggest with respect to program construction, the Twin Networks

unconditionally duplicates the program, regardless of the intervention query while, the

SWIP approach scales slower with program size and maximum clause body length and

at worst case, will incur the same cost as the Twin Network approach. In realistic ap-

plications, where programs and evidence sets may be large but interventions focused on

a small subset of predicates, SWIPs can take advantage of the locality and specificity of

the query structure. As a result, SWIPs naturally favor compact counterfactual represen-

tations and furthermore, are a more realistic approach for capturing real world counter-

factuals. Beyond the issue of cross-world independence assumptions growing at a doubly

exponential rate, Richardson and Robins (2013) strongly emphasize the assumptions of

the Twin Network are, by definition, mutually exclusive and thus, experimentally unver-

ifiable [17]. SWIGs, and by extension, SWIPs, ability to avoid this is especially salient

in sequentially randomized trials and longitudinal decision problems. In such settings,

treatments are assigned over time based on evolving histories, and counterfactual rea-

soning must respect the temporal and logical structure of these assignments. Richardson

and Robins show that Twin Network constructions can induce incorrect independencies

in these cases, whereas SWIGs preserve the correct causal structure by explicitly repre-

senting interventions as node-splitting operations within a single world [17]. Our results

show that SWIPs inherit this advantage at the level of probabilistic logic programs: in-

Single World Intervention Programs 11

terventions modify only the clauses corresponding to treatment assignment mechanisms,

while leaving downstream deterministic and probabilistic dependencies intact.

We can characterize these counterfactual independence conclusions in PLP contexts

when not using SWIPs and show our method is a more general and robust implementation

of the SCM semantics and is consistent with CP-logic over the same set of models as the

Twin Network.

Theorem 4.4 (SWIP Consistency with LPAD)

Let P be a propositional LPAD-program such that every selection yields a logic pro-

gram with a unique supported model. Let X,E ⊆ B be sets of propositions with value

assignments x and e, respectively, and let ϕ be a P-formula.

Denote by πCP
P (ϕ | E = e, fix(X := x)) the counterfactual probability computed by

CP-logic using the fixed-operator semantics on LPADs, and by

πSWIP
Prob(P)(ϕ | E = e, fix(X := x))

the counterfactual probability induced by the corresponding Single World Intervention

Program (SWIP) constructed from Prob(P).
Then,

πCP
P (ϕ | E = e, fix(X := x)) = πSWIP

Prob(P)(ϕ | E = e, fix(X := x)).

Theorem 4.5 (Consistency of SWIPs with CP-Logic)

Let P be a ProbLog program with unique supported models, and let X,E ⊆ B with

value assignments x and e. For any P-formula ϕ, denote by

πCP
LPAD(P)(ϕ | E = e, fix(X := x))

the counterfactual probability defined via CP-logic on the LPAD-transformation of P,
and by

πSWIP
P (ϕ | E = e, fix(X := x))

the counterfactual probability computed by the SWIP semantics directly on P.
Then,

πCP
LPAD(P)(ϕ | E = e, fix(X := x)) = πSWIP

P (ϕ | E = e, fix(X := x)).

For example, consider a simple power failure system that involves a deterministic

relationship that creates a logical constraint. Let A be the main power supply, B the

independent backup power supply, C an indicator for if the system is on, and D a

deterministic report filed iff C is true. As a ProbLog program, P:

% Exogenous variables for the two power supplies

0.5::u_a

0.5::u_b

% Endogenous variables defined by structural rules

a :- u_a.

12 Habib et al.

b :- u_b.

c :- a.

c :- b.

d :- c.

The atom a represents the main power being active, b represents the backup being

active, c represents the system being on, and d represents the report being filed. The rule

d :- c establishes the deterministic link. Now consider the query, ”Given we know the

back up generator was on, is the report being filed independent of the main generator?”

or formally, D⊥A|B = 1. According to standard do-calculus on the Twin Network of

this program, we see that D is not independent of A but of course, the status of A is

no longer relevant as B = 1 fully informs us of D. Indeed, in the ProbLog d-separation

metainterpreter by [19], the twin network program will not reveal this dependency but

it is trivially identified in the SWIP.

The SWIG literature emphasizes that single-world node-splitting correctly exposes

many counterfactual conditional independencies that cannot be read from a naive multi-

world duplication via d -separation without further assumptions [17]. All d -separation

claims in this paper are evaluated on the grounded dependency graph corresponding to

the induced Structural Causal Model of the ProbLog program. Concretely, this graph

is obtained by grounding the program and interpreting probabilistic facts as mutually

independent exogenous variables and logical clauses as directed functional dependencies

between endogenous variables. The following formal statement makes this concrete in

the ProbLog setting and generalizes the power failure example.

Theorem 4.6 (Misidentified Counterfactual Independencies in Twin Network Programs)

Let P be a ProbLog program encoding an SCM M = ⟨U,V,F⟩. Suppose there exist

distinct endogenous atoms A,B,D ∈ V such that:

(1) D is defined in LP(P) by a set of clauses whose combined effect is a deterministic

function d = g(a, b,uD) (possibly expressed via multiple rules), where uD denotes

the exogenous input(s) relevant to D;

(2) there exists a value b⋆ for B with the screening property

g(a, b⋆, uD) = g(a′, b⋆, uD) ∀a, a′ and all uD,

i.e. when B = b⋆ the value of D is pointwise independent of A given the same

exogenous input uD;

(3) A and B are not d-separated by the empty set in the causal graph underlying P and

the program satisfies unique supported model conditions so the ProbLog semantics

is well defined.

Then the following hold:

(a) On the SWIP for the intervention (B=b⋆) the node Db⋆ is d-separated from A

(possibly conditioning on nothing or on appropriate observed variables), and hence

the SWIP implies the counterfactual independence D ⊥ A|B = b∗

(b) There exist programs P satisfying (1) - (3) for which the Twin Network construction

T (P) does not d-separate the factual atom A from the counterfactual copy D∗. Con-

sequently, ordinary do-calculus on T (P) will not soundly identify the independence.

Single World Intervention Programs 13

In the power failure example, it is trivial to see this is a result of the direct dependency

between D and C. However, the value of a counterfactual program transformation which

is a complete independence oracle is highlighted by condition (1) of Theorem 4.6, where

D may be expressed, unobviously, deterministically as a composition of multiple rules.

The above results demonstrate the failure of the Twin Network is not a PLP issue

nor can PLP alone reveal independencies in program structure when interventions are

implemented across worlds [19][18]. SWIPs, by design, align functional causal semantics

with the interventional theory of CP-Logic while avoiding independence pathologies.

5 Experiments

We’ve established that SWIPs can be used for counterfactual queries by reducing them

to marginal inference and carry out this query via SharpSAT, a top down Knowledge

Compilation [13]. To assess the scalability and efficiency of our SWIP counterfactual

inference method, we replicate and extend the experimental setup from [11]. Our evalua-

tion focuses on three primary questions: (i) how counterfactual program size varies with

the SWIP approach and the Twin Network approach, (ii) how inference time varies with

program size and structural complexity, and (iii) how inference time is affected by the

number and type of evidence and intervention atoms.

Benchmark Instances Following [11], we generate acyclic directed graphs (DAGs) with

a controlled size and treewidth. Each instance corresponds to a random probabilistic

logic program modeling reachability in a directed graph. For a given graph G = (V,E)

with distinguished start and goal nodes s, g ∈ V , we encode the probability of reaching

g from s using the following ProbLog schema:

r(s).

0.1::trap(Y) :- p(X,Y).

r(Y) :- p(X,Y).

1/d(X)::p(X, s 1(X));...;1/d(X)::p(X, s d(X)):- r(X), \+ trap(X).

Here, d(X) denotes the out-degree of vertex X, and s i(X) denotes its i-th child node.

The resulting program represents the random process of traversing the graph from s to g,

avoiding nodes marked as traps. We vary two parameters controlling instance difficulty:

the number of vertices n and the treewidth k. We first generate a random tree of size n us-

ing the networkx library (which has treewidth 1), and then add k additional nodes, each

connected by incoming arcs from randomly selected original nodes. Finally, a single goal

vertex g is added, receiving edges from each of the k new nodes. This procedure yields a

DAG of size n+k+1 with treewidth min(n, k) and ensures acyclicity. For each instance,

we sample up to five pieces of evidence and five interventions, allowing us to examine the

interaction between query complexity and inference performance. Counterfactual queries

are defined over this model by introducing positive or negative evidence on intermediate

reachability predicates and positive or negative interventions on selected edges, follow-

ing the schema: πMP
(
r(g) | ¬r(v1), . . . ,¬r(vn), (¬r(v′1)), . . . , (¬r(v′m))

)
, for some evidence

nodes v1, . . . , vn and intervened nodes v′1, . . . , v
′
m.

14 Habib et al.

s

v1 v... v...

v... v... v... vn

u1 u... uk

g

Fig. 4: Construction of benchmark DAGs. A random tree of size n rooted at s (top) is

generated, a dense layer of k nodes u1, . . . , uk is added below (each receiving edges from

multiple tree nodes), and a single goal node g is appended below the dense layer receiving

edges from every ui.

All experiments were executed on the University of Edinburgh’s compute cluster. Each

node is equipped with two Intel Xeon Gold 5218 CPUs (16 cores per CPU, 2.30 GHz

base frequency), with 256 GB of DDR4 RAM per node operating at 2666 MHz. The

cluster runs Red Hat Enterprise Linux 8.6 and uses the Slurm workload manager for

parallel execution. We performed all experiments using Python 3.9.21 and ProbLog 2.2,

with inference powered by the SHARPSAT knowledge compiler for top-down inference. This

compiler was shown in [11] to be fastest for counterfactual program query compilation.

Each query was given a time limit of 1800 seconds; queries reaching the limit were

assigned this maximum runtime for consistency with [11].

5.1 Results and Discussion

Figure 5 shows the unfolded treewidths of the compiled ProbLog programs as a func-

tion of the synthetic graph size and original treewidth. As predicted, the SWIG-based

transformation produces programs with substantially smaller unfolded treewidths than

the Twin Network baseline. This difference arises because our approach performs a local-

ized “graph surgery,” modifying only the clauses corresponding to intervened variables,

rather than duplicating the entire logical program. By maintaining a single-world rep-

resentation, the resulting dependency graph remains tighter and less entangled, leading

to more compact knowledge-compilation structures. These smaller unfolded programs

directly reduce the complexity of subsequent inference procedures, since treewidth is the

dominant factor determining compilation cost in ProbLog-based inference [12, 5, 13].

This structural advantage translates directly into computational gains, as illustrated in

Figure 6. Across all benchmark instances, the SWIG-based programs consistently com-

pile and evaluate faster than their Twin Network counterparts. On average, our method

requires approximately 65% of the runtime of the baseline for equivalent evidence and

intervention configurations. The performance gap remains stable across varying program

sizes and query complexities, confirming that reducing unfolded treewidth yields mea-

surable improvements in both compilation and inference phases. Together, these results

empirically validate that the SWIG-based transformation preserves the expressive and

Single World Intervention Programs 15

Fig. 5: Unfolded treewidth as a function of synthetic graph size and original treewidth.

The SWIG-based transformation yields narrower unfolded dependency structures than

the Twin Network approach.

causal semantics of counterfactual reasoning while significantly improving computational

efficiency.

Fig. 6: Mean compilation and inference times for varying numbers of evidence and inter-

vention atoms. The SWIG-based transformation achieves lower inference and compilation

times, corresponding to its smaller unfolded program structures.

6 Conclusion

We have presented a SWIG-based approach to counterfactual reasoning in ProbLog. By

“fixing” intervened nodes and propagating this intervention to descendant rules, we are

16 Habib et al.

able to reduce counterfactual queries to standard marginal inference queries. Our pro-

cedure of a transformation under intervention and subsequent evidence incorporation, is

proven to yield the counterfactual distribution P (· | do(X = x), E = e) under assump-

tions of consistency and modularity. It also provides significant computational speedups

in inference compared to existing approaches for counterfactual reasoning in ProbLog.

In future work, it would be interesting to apply this approach to real-world settings

and establishing counterfactual reasoning capabilities to DeepProbLog, an extension of

ProbLog that combines it with neural network predicates to combine highlevel logical

reason with low level subsymbolic perception [14]. Furthermore, exploring σ-calculus, a

more general form of do-calculus [2, 7], to define counterfactuals for programs without

unique supported models offers promising research directions.

Acknowledgments

Funding for this research was provided by NERC through an E4 DTP studentship

(NE/S007407/1).

References

[1] Alexander Balke and Judea Pearl. “Probabilistic Evaluation of Counterfactual

Queries”. In: Probabilistic and Causal Inference: The Works of Judea Pearl. 1st ed.

Vol. 36. New York, NY, USA: Association for Computing Machinery, Mar. 2022,

pp. 237–254. isbn: 978-1-4503-9586-1. url: https://doi.org/10.1145/3501714.

3501733 (visited on 04/16/2025).

[2] Juan Correa and Elias Bareinboim. “A Calculus for Stochastic Interventions:Causal

Effect Identification and Surrogate Experiments”. en. In: Proceedings of the AAAI

Conference on Artificial Intelligence 34.06 (Apr. 2020), pp. 10093–10100. issn:

2374-3468. doi: 10.1609/aaai.v34i06.6567. url: https://ojs.aaai.org/

index.php/AAAI/article/view/6567 (visited on 02/04/2026).

[3] Luc De Raedt, Angelika Kimmig, and Hannu Toivonen. “ProbLog: a probabilistic

prolog and its application in link discovery”. In: Proceedings of the 20th inter-

national joint conference on Artifical intelligence. IJCAI’07. San Francisco, CA,

USA: Morgan Kaufmann Publishers Inc., Jan. 2007, pp. 2468–2473. (Visited on

04/16/2025).

[4] Luc De Raedt, Angelika Kimmig, and Hannu Toivonen. “ProbLog: A Probabilistic

Prolog and Its Application in Link Discovery”. In: Proceedings of the 20th Inter-

national Joint Conference on Artifical Intelligence. IJCAI’07. San Francisco, CA,

USA: Morgan Kaufmann Publishers Inc., Jan. 6, 2007, pp. 2468–2473.

[5] Thomas Eiter, Markus Hecher, and Rafael Kiesel. “Treewidth-Aware Cycle Break-

ing for Algebraic Answer Set Counting”. en. In: Proceedings of the International

Conference on Principles of Knowledge Representation and Reasoning 18.1 (Sept.

2021). Conference Name: Proceedings of the 18th International Conference on Prin-

ciples of Knowledge Representation and Reasoning, pp. 269–279. issn: 2334-1033.

doi: 10.24963/kr.2021/26. url: https://proceedings.kr.org/2021/26/

(visited on 08/21/2025).

https://doi.org/10.1145/3501714.3501733
https://doi.org/10.1145/3501714.3501733
https://doi.org/10.1609/aaai.v34i06.6567
https://ojs.aaai.org/index.php/AAAI/article/view/6567
https://ojs.aaai.org/index.php/AAAI/article/view/6567
https://doi.org/10.24963/kr.2021/26
https://proceedings.kr.org/2021/26/

Single World Intervention Programs 17

[6] Kai Epstude and Neal J. Roese. “The Functional Theory of Counterfactual Think-

ing”. In: Personality and social psychology review : an official journal of the Soci-

ety for Personality and Social Psychology, Inc 12.2 (May 2008), pp. 168–192. issn:

1088-8683. doi: 10.1177/1088868308316091. url: https://pmc.ncbi.nlm.nih.

gov/articles/PMC2408534/ (visited on 11/07/2025).

[7] Patrick Forré and Joris M. Mooij. Constraint-based Causal Discovery for

Non-Linear Structural Causal Models with Cycles and Latent Confounders.

arXiv:1807.03024 [stat]. July 2018. doi: 10.48550/arXiv.1807.03024. url: http:

//arxiv.org/abs/1807.03024 (visited on 02/04/2026).

[8] Tobias Gerstenberg. “Counterfactual simulation in causal cognition”. In: Trends

in Cognitive Sciences 28.10 (Oct. 2024), pp. 924–936. issn: 1364-6613. doi: 10.

1016/j.tics.2024.04.012. url: https://www.sciencedirect.com/science/

article/pii/S1364661324001074 (visited on 11/07/2025).

[9] Joseph Y. Halpern. Actual Causality. en. Cambridge, MA, USA: MIT Press,

Feb. 2019. isbn: 978-0-262-53713-1. url: https : / / mitpress . mit . edu /

9780262537131/actual-causality/ (visited on 11/21/2025).

[10] Mark Hopkins and Judea Pearl. “Causality and Counterfactuals in the Situation

Calculus”. In: Journal of Logic and Computation 17.5 (Oct. 2007), pp. 939–953.

issn: 0955-792X. doi: 10.1093/logcom/exm048. url: https://doi.org/10.

1093/logcom/exm048 (visited on 11/21/2025).

[11] Rafael Kiesel, Kilian Rückschloß, and Felix Weitkämper. ”What if?” in Probabilis-

tic Logic Programming. arXiv:2305.15318. May 2023. doi: 10.48550/arXiv.2305.

15318. url: http://arxiv.org/abs/2305.15318 (visited on 03/21/2025).

[12] Rafael Kiesel, Kilian Rückschloß, and Felix Weitkämper. ”What If?” In Probabilis-

tic Logic Programming. May 24, 2023. doi: 10.48550/arXiv.2305.15318. arXiv:

2305.15318. url: http://arxiv.org/abs/2305.15318 (visited on 03/21/2025).

Pre-published.

[13] Tuukka Korhonen and Matti Järvisalo. “Integrating Tree Decompositions into De-

cision Heuristics of Propositional Model Counters (Short Paper)”. en. In: LIPIcs,

Volume 210, CP 2021 210 (2021). Ed. by Laurent D. Michel. Artwork Size: 11

pages, 918439 bytes ISBN: 9783959772112 Medium: application/pdf Publisher:

Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 8:1–8:11. issn: 1868-8969. doi:

10.4230/LIPICS.CP.2021.8. url: https://drops.dagstuhl.de/entities/

document/10.4230/LIPIcs.CP.2021.8 (visited on 08/21/2025).

[14] Robin Manhaeve et al. “Neural probabilistic logic programming in DeepProbLog”.

In: Artificial Intelligence 298 (Sept. 2021), p. 103504. issn: 0004-3702. doi: 10.

1016/j.artint.2021.103504. url: https://www.sciencedirect.com/science/

article/pii/S0004370221000552 (visited on 08/20/2025).

[15] Judea Pearl. Causality. 2nd ed. Cambridge: Cambridge University Press, 2009.

isbn: 978-0-521-89560-6. doi: 10.1017/CBO9780511803161. url: https://www.

cambridge.org/core/books/causality/B0046844FAE10CBF274D4ACBDAEB5F5B

(visited on 08/21/2025).

[16] Judea Pearl and Dana Mackenzie. The Book of Why: The New Science of Cause

and Effect. 1st. USA: Basic Books, Inc., Apr. 2018. isbn: 978-0-465-09760-9.

[17] T. Richardson. “Single World Intervention Graphs (SWIGs) : A Unifi-

cation of the Counterfactual and Graphical Approaches to Causality”. In:

https://doi.org/10.1177/1088868308316091
https://pmc.ncbi.nlm.nih.gov/articles/PMC2408534/
https://pmc.ncbi.nlm.nih.gov/articles/PMC2408534/
https://doi.org/10.48550/arXiv.1807.03024
http://arxiv.org/abs/1807.03024
http://arxiv.org/abs/1807.03024
https://doi.org/10.1016/j.tics.2024.04.012
https://doi.org/10.1016/j.tics.2024.04.012
https://www.sciencedirect.com/science/article/pii/S1364661324001074
https://www.sciencedirect.com/science/article/pii/S1364661324001074
https://mitpress.mit.edu/9780262537131/actual-causality/
https://mitpress.mit.edu/9780262537131/actual-causality/
https://doi.org/10.1093/logcom/exm048
https://doi.org/10.1093/logcom/exm048
https://doi.org/10.1093/logcom/exm048
https://doi.org/10.48550/arXiv.2305.15318
https://doi.org/10.48550/arXiv.2305.15318
http://arxiv.org/abs/2305.15318
https://doi.org/10.48550/arXiv.2305.15318
https://arxiv.org/abs/2305.15318
http://arxiv.org/abs/2305.15318
https://doi.org/10.4230/LIPICS.CP.2021.8
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CP.2021.8
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CP.2021.8
https://doi.org/10.1016/j.artint.2021.103504
https://doi.org/10.1016/j.artint.2021.103504
https://www.sciencedirect.com/science/article/pii/S0004370221000552
https://www.sciencedirect.com/science/article/pii/S0004370221000552
https://doi.org/10.1017/CBO9780511803161
https://www.cambridge.org/core/books/causality/B0046844FAE10CBF274D4ACBDAEB5F5B
https://www.cambridge.org/core/books/causality/B0046844FAE10CBF274D4ACBDAEB5F5B

18 Habib et al.

2013. url: https : / / www . semanticscholar . org / paper / Single -

World - Intervention - Graphs - (- SWIGs -) - %3A - A - of - Richardson /

fb11d632e389e8deca243491f7a65eb238556097 (visited on 08/21/2025).

[18] Kilian Rückschloß and Felix Weitkämper. “On the Independencies Hidden in the

Structure of a Probabilistic Logic Program”. In: Electronic Proceedings in Theoret-

ical Computer Science 385 (Sept. 2023), 169–182. issn: 2075-2180. doi: 10.4204/

eptcs.385.17. url: http://dx.doi.org/10.4204/EPTCS.385.17.

[19] Kilian Rückschloß and Felix Weitkämper. “On the Subtlety of Causal Reasoning in

Probabilistic Logic Programming: A Bug Report about the Causal Interpretation

of Annotated Disjunctions”. en. In: ().

[20] Ilya Shpitser, Thomas S. Richardson, and James M. Robins. Multivariate Coun-

terfactual Systems And Causal Graphical Models. Aug. 28, 2021. doi: 10.48550/

arXiv.2008.06017. arXiv: 2008.06017 [stat]. url: http://arxiv.org/abs/

2008.06017 (visited on 04/15/2025). Pre-published.

[21] Joost Vennekens, Maurice Bruynooghe, and Marc Denecker. “Embracing Events in

Causal Modelling: Interventions and Counterfactuals in CP-Logic”. en. In: Logics in

Artificial Intelligence. Ed. by Tomi Janhunen and Ilkka Niemelä. Berlin, Heidelberg:

Springer, 2010, pp. 313–325. isbn: 978-3-642-15675-5. doi: 10.1007/978-3-642-

15675-5_27.

[22] Joost Vennekens, Marc Denecker, and Maurice Bruynooghe. “Cp-logic: A language

of causal probabilistic events and its relation to logic programming”. In: Theory

Pract. Log. Program. 9.3 (May 2009), pp. 245–308. issn: 1471-0684. doi: 10.1017/

S1471068409003767. url: https://doi.org/10.1017/S1471068409003767 (vis-

ited on 08/06/2025).

[23] Joost Vennekens, Sofie Verbaeten, and Maurice Bruynooghe. “Logic Programs with

Annotated Disjunctions”. en. In: Logic Programming. Ed. by Bart Demoen and

Vladimir Lifschitz. Berlin, Heidelberg: Springer, 2004, pp. 431–445. isbn: 978-3-

540-27775-0. doi: 10.1007/978-3-540-27775-0_30.

https://www.semanticscholar.org/paper/Single-World-Intervention-Graphs-(-SWIGs-)-%3A-A-of-Richardson/fb11d632e389e8deca243491f7a65eb238556097
https://www.semanticscholar.org/paper/Single-World-Intervention-Graphs-(-SWIGs-)-%3A-A-of-Richardson/fb11d632e389e8deca243491f7a65eb238556097
https://www.semanticscholar.org/paper/Single-World-Intervention-Graphs-(-SWIGs-)-%3A-A-of-Richardson/fb11d632e389e8deca243491f7a65eb238556097
https://doi.org/10.4204/eptcs.385.17
https://doi.org/10.4204/eptcs.385.17
http://dx.doi.org/10.4204/EPTCS.385.17
https://doi.org/10.48550/arXiv.2008.06017
https://doi.org/10.48550/arXiv.2008.06017
https://arxiv.org/abs/2008.06017
http://arxiv.org/abs/2008.06017
http://arxiv.org/abs/2008.06017
https://doi.org/10.1007/978-3-642-15675-5_27
https://doi.org/10.1007/978-3-642-15675-5_27
https://doi.org/10.1017/S1471068409003767
https://doi.org/10.1017/S1471068409003767
https://doi.org/10.1017/S1471068409003767
https://doi.org/10.1007/978-3-540-27775-0_30

Single World Intervention Programs 19

Appendix A Notation and Definitions

Table A 1: Summary of key notation used throughout the paper.

Symbol Definition

V Set of endogenous variables
U Set of exogenous variables
F Set of functional equations
pa(X) Set of endogenous parents of x
M Structural causal model (SCM): tuple of ⟨U,V,F⟩
X := fX(pa(X), ϵX) Structural equation for variable X w
do(X := x) Pearl’s do-operator: modifies SCM equations of involving X
fix(X := x) Fix-operator: constructs a Single-World Intervention Graph
V∗ Counterfactual copies of variables in the Twin Network
MK Twin Network SCM with shared exogenous variables
P ProbLog program with logic and random facts
LP(P) Underlying logical clauses in a ProbLog program
B Propositional alphabet for logic atoms
T (P) Transformed Twin Network ProbLog program
S(P) Transformed Single World Intervention Program

Appendix B Proofs of Theorems 3.1, 4.1, 4.2

Proof of Theorem 3.1

Consider that for each fact r :: A ∈ Facts(P), we either intervene on r if A is in the

intervention set X or we add the observed and counterfactual facts to our program

T (P). This has a complexity of Θ(|Facts(P)|).
Similarly, for each clause C = h← b1, . . . , bn ∈ LP(P) with h /∈ X:, we add the clause

and the counterfactual copy to T (P). Contructing the body of the counterfactual clause

takes Θ(n) per clause. Thus the total rule transformation complexity is:∑
C∈LP(P)

Θ(|body(C)|) = Θ(|LP(P)| · Lmax)

Summing these steps together we get a complexity of Θ(|P| · Lmax).

Proof of Theorem 4.1

Analogous to Theorem 3.1, except we do not need to rewrite every clause, just the clauses

with variables in the intervention set. Thus, we have O(|P| · Lmax)

Proof of Theorem 4.2

Let A be the set of internal atoms. Then T (P) contains approximately 2|A| atoms and

rules. However, as the primal graph of T (P), denoted GT (P), is constructed over the set

of endogenous atoms A ∪ A∗ and no rule in T (P) contains both an atom from A and

an atom from A∗ in its body, the resulting primal graph consists of two disconnected

20 Habib et al.

components. The treewidth of this composite graph, w(T (P)), is therefore equal to the

treewidth of the primal graph of the original program, w(P). Since inference (e.g., via

knowledge compilation) has complexity as a function of treewidth, we have

O(g(w(T (P)))) = O(g(w(P)))

Let GS(P) be the primal graph of the transformed program S(P). Note that removing

rules with heads in X deletes edges in GP and that rewriting variables with fixed values

does not add new dependencies. Therefore:

w(S(P)) ≤ w(P)

Hence, inference complexity is:

O(g(w(S(P)))) ≤ O(g(w(T (P))))

Appendix C Proofs of Theorem 4.4 and Theorem 4.5

To demonstrate the consistency of the SWIP treatment of counterfactuals with CP-logic

we start by recalling the theory of CP-Logic from Vennekens et al. (2009) and the LPAD-

programs of Vennekens et al. (2004) with their standard semantics. An LPAD program,

P, is a finite set of rules of the following form:

RC := h1 : π1; . . . ;hl : πl ← b1, . . . , bn

where hi and bi are atoms and literals in some set of propositions B. We have that the

πi ∈ [0, 1] are associated probabilities for hi such that
∑

i πi ≤ 1. We define head(RC) :=

(h1, . . . , hl) to be a tuple of propositions which are the head of RC, where h ∈ (h1, . . . , hl)

if h = hi for a 1 ≤ i ≤ l and furthermore, l(RC) := l and hi(RC) := hi for 1 ≤ i ≤ l.

Similarly, the body of RC is the finite set of literals body(RC) := {b1, . . . , bn}
A selection, σ, of P is a function σ : P → N ∪ {⊥}, where ⊥ /∈ N, that assigns to each

LPAD-clause RC ∈ P a natural number in [1, l] or σ(RC) := ⊥. To each selection σ, we

associate a probability

π(σ) :=
∏

RC∈P
σ(RC)∈N

πσ(RC)(RC)
∏

RC∈P
σ(RC)=⊥

1−
l(RC)∑
i=1

πi(RC)


and each selection gives a logic program

Pσ := {hσ(RC) ← body(RC) : RC ∈ P, σ(RC) ̸= ⊥}.

We define πdist, the distribution semantics of P, as

πdist
P (ϕ) :=

∑
σ selection
Pσ|=ϕ

π(σ).

where ϕ is some P-formula.

Rigguzi (2020) §2.4 establishes we can can translate an LPAD program P in B to

a ProbLog program, Prob(P) where the logic of the program LP (Prob(P) is given by

Single World Intervention Programs 21

choosing distinct propositions hRC
i , ui(RC) ̸∈ B for all RC ∈ P and natural number in

[1, l] and letting

hRC
i ← body(RC) ∪ {¬hRC

j | 1 ≤ j < i} ∪ {ui(RC)},

hi ← hRC
i

Meanwhile, the random facts, Facts(Prob(P)) are defined as

Facts(Prob(P)) :=

{
πi(RC)

1−
∏

1≤j<i πj(RC)
:: ui(RC)

∣∣∣∣∣ RC ∈ P, 1 ≤ i ≤ l

}
.

This then ensures the following:

Theorem Appendix C.1 (Riguzzi (2020), §2.4)
Let P be a LPAD-program. Then, for every selection σ of P a set of possible worlds

E(σ), which consists of all possible worlds E such that ¬ui(RC) holds unless σ(RC) ̸= ⊥
or i > σ(RC) and such that uσ(RC)(RC) holds for every RC ∈ P with σ(RC) ̸= ⊥.
We conclude that Pσ yields the same answer to every B-formula as the logic programs

LP(Prob(P)) ∪ ξ for every ξ ∈ E(σ) and that π(E(σ)) = π(σ). Further, the distribution

semantics πdist
P of P and the distribution semantics πdist

Prob(P) of Prob(P) yield the same

joint distribution on P.

Conversely, we can turn each ProbLog program to an equivalent LPAD-Program.

Again, Riguzzi (2020), §2.4 establishes for a ProbLog program P the LPAD-

transformation LPAD(P) is the LPAD-program that consists of one clause of the form

u(RF) : π(RF)← for every random fact π(RF) :: u(RF) of P and a clause of the form

head(LC) : 1← body(LC) for every logic clause LC ∈ LP(P). In this case, every selec-

tion σ of LPAD(P) of probability not zero corresponds to a unique possible world E(σ),
in which u(RC) is true if and only if σ(RC) ̸= ⊥.

Again, we obtain that the LPAD-transformation respects the distribution semantics.

Theorem Appendix C.2 (Riguzzi (2020), §2.4)
By the transformation of P to the LPAD program LPAD(P), we have LP(P)∪E(σ) and
LPAD(P)σ yield the same answer to every P-formula. We also get that π(σ) = π(E(σ)).
Hence, P and LPAD(P) yield the same probability for every P-formula.

Up until now, we have not differed from Kiesel et al. (2023) proof for showing the equiv-

alence of interventions and counterfactuals in CP-Logic with SCMs by the do-operator

in Twin Networks. However, to demonstrate that the equivalence holds under the fix-

operator, we must extend the above theorems with the lemma which follows (and is

proved) closely in style to Kiesel et al. (2023) Appendix B.

Lemma Appendix C.3

Choose a proposition X ∈ P together with a truth value x.

1. In the situation of Theorem Appendix C.1, for every possible world E ∈ E(σ) the logic

programs Pσ
fix(X:=x) and LP(Prob(P)fix(X:=x)) ∪ E yield the same answer to every P-

formula.

2. In the situation of Theorem Appendix C.2, for every selection σ of LPAD(P), the logic

programs LPAD(P)σfix(X:=x) and LP(Prob(P)fix(X:=x))∪E(σ) yield the same answer to

every P-formula.

22 Habib et al.

Proof

To prove (1), consider by Theorem B.1, for every P-formula ϕ, Pσ and LP(Prob(P))∪E
will give the same answer to the query because in both programs are modular and conse-

quently, their behavior is invariant to erasing clauses with X in the head or adding X ←.

More precisely, the SWIG style fix(X := x)-operation in a LPAD/ProbLog syntactic

setting is implemented by removing every head-option h : π from every LPAD-clause

whose head contains X, and adds some deterministic fact X ← 0/1.

This implements the same surgical operations as used in implementing the do-operator

in earlier proofs. If we fix a selection σ of P and let E ∈ E(σ) be an arbitrary possible

world corresponding to σ, then the translation Prob(P) introduces for each annotated

disjunction in P a sequence of auxiliary atoms and random facts whose semantic effect

is to pick exactly one head option (or none) according to the annotated probabilities.

A selection σ corresponds to fixing which auxiliary random facts are true in a possible

world E of Prob(P); conversely E determines σ.

Performing the syntactic removals and additions that implement fix(X := x) on Pσ

is equivalent to performing the corresponding removals and additions on the Prob(P)

translation and then conjoining the choices represented by E . Intuitively, the removals

delete the same head-options in both syntaxes, and the deterministic additions become

deterministic facts in the ProbLog encoding (or deterministic clauses whose head is an

ordinary atom).

Because logic programs are modular, if two programs differ only in clauses for a

restricted set of atoms (here, the atoms in X and the auxiliary atoms that were in-

troduced to encode choices for those rules), then the truth of a P-formula that men-

tions only other atoms remains unaffected. In particular, when we compare Pσ
fix(X:=x) to

LP(Prob(P)fix(X:=x))∪E , all choices about auxiliary atoms (those in E) are already fixed

by E , and the forced/blocked heads for atoms in X are syntactically identical in the two

programs. It follows that the two programs produce the same derivations for all atoms

and thus agree on the truth of every P-formula.

For (2), we analogously apply Theorem B.2 but start with a selection σ of LPAD(P).
The construction of LPAD(P)σ and the effect of fix(X := x) on it correspond, under

the ProbLog translation, to LP(Prob(P)fix(X:=x)) conjoined with the possible world E(σ)
that encodes the selection σ. The same modularity and syntactic-translation observations

as above show the two programs are extensionally identical (on atoms of interest) and

therefore produce the same answers to every P-formula. □

From here, our proofs for Theorem 4 and 5 follows Kiesel et al. (2023) again. CP-logic

estalishes a causal semantics for LPAD-programs. The semantics focus on P-processes

and tying them to the logic of LPAD. More precisely, a P-process T is a tuple (T, I),
where T is a directed tree and each edge is a labelled with a probability that describes

transitioning from each node which are Humean events and. For each non-leaf node, the

outgoing edges probabilities must sum to one. I is a map that assigns each node n in T

a Herbrand Interpretation I(n) in B.

Furthermore, for each n in T , we associate the probability πT (n) which is given by

the product of the probabilities of all edges along the walk from root ⊥ of T to n. This

Single World Intervention Programs 23

produces a distribution πT on the Herbrand interpretations of I of B by

πT (I) :=
∑

l leaf of T, I(l)=I

πT (l).

Vennekens et al. (2009) connects LPAD-programs to P-processes by fixing a LPAD-

program P and defining a hypothetical derivation sequence of n in T as a sequence of

three valued interpretations (νi)0≤i≤n where ν0 assigns False to all atoms not in I(n)
and for i > 0, there exists RC ∈ P and j ∈ [1, l] with body(RC)νi ̸= False, with

hi+1
j = Undefined, and with νi(p) = νi+1(p) for all other proposition p ∈ P.
Such a sequence is terminal if it cannot be extended and each terminal hypothetical

derivation sequence n has the same limit νn, which is known as the potential in n.

For RC ∈ P, we say that RC fires in a node n of T if for each 1 < i < l(RC)

there exists a child ni of n such that I(ni) = I(n) ∪ {hi(RC)} and such that each

edge (n, ni) is labeled with πi(RC). Moreover, there exists a child nl(RC)+1 of n with

I(nl(RC)+1) = I(n).
Let RE(n) denotes the set of all rules RC ∈ P, for which there exists no ancestor a

of n with E(a) = RC. Then, T then may be an execution model of P, T |= P, if there
exists a mapping E from the non-leaf nodes of T to P such that:

1. I(⊥) = ∅ for the root ⊥ of T .

2. In each non-leaf node n a LPAD-clause E(n) ∈ RE(n) fires with I(n) |= body(E(n)).
3. For each leaf l of T there exists no LPAD-clauses RC ∈ RE(l) with I(l) |=

body(RC).

4. For every node n of T we find body(E(n))νn ̸= Undefined, where νn is the potential

in n.

If T |= P, then the probability distribution defined by πCP
P := πT matches the distribu-

tion semantics πdist
P and implies the following.

Lemma Appendix C.4 (Vennekens et al. (2009), §A.2)
Let l be a leaf node in an execution model T of the LPAD-program P. In this case, there

exists a unique path p from the root ⊥ of T to l. Define the selection σ(l) by setting

σ(l)(RC) := i ∈ N if and only if there exists a node nj along p with E(nj) = RC and

I(nj+1) := I(nj) ∪ {hi(RC)}. Otherwise, we set σ(l)(RC) := ⊥. In this way, we obtain

that Pσ(l) |= I(l). On the other hand, we find for each selection σ of P a leaf l of T with

σ(l) = σ.

To finally demonstrate the equivalence of this treatment of counterfactuals to CP-

logic, consider the presentation of interventions and counterfactuals in CP-logic from

Vennekens et al. (2010).

24 Habib et al.

Algorithm 5 Treatment of Counterfactuals in CP-logic

Require: X := x,E = e ⊆ P, P-formula ϕ.

Ensure: Counterfactual probability πCP
P (ϕ | E = e, do(X := x)).

1: Choose an execution model T of P.
2: for each leaf l of T do

3: Intervene in the logic program Pσ(l) according to X := x to obtain Pσ(l),do(X:=x).

4: Define

πl(ϕ) :=

{
1, I(l) |= (E = e) ∧ Pσ(l),do(X:=x) |= ϕ

0, else.

5: end for

6: Return

πCP
P (ϕ | E = e, do(X := x)) :=

∑
l leaf of T

πl(ϕ) · πCP
P (I(l) | E = e). (B1)

As we have established in Lemma Appendix C.3, we can analogously posit that with

the rewiring of clauses under the fix-operator the following algorithm:

Algorithm 6 Fixed Operator Counterfactuals in CP-logic

Require: X := x,E = e ⊆ P, P-formula ϕ.

Ensure: Counterfactual probability πCP
P (ϕ | E = e, fix(X := x)).

1: Choose an execution model T of P.
2: for each leaf l of T do

3: Intervene in the logic program Pσ(l) according toX := x to obtain Pσ(l),fix(X:=x).

4: Define

πl(ϕ) :=

{
1, I(l) |= (E = e) ∧ Pσ(l),fix(X:=x) |= ϕ

0, else.

5: end for

6: Return

πCP
P (ϕ | E = e, fix(X := x)) :=

∑
l leaf of T

πl(ϕ) · πCP
P (I(l) | E = e). (B2)

With these preparations we can now turn to the proof of the desired consistency results:

Proof of Theorem 4.4

By Theorem 6, Lemma 9 and Lemma 8 the right-hand side of (B2) for P is the sum of

the conditional probabilities π(E|E = e) of all possible worlds E of Prob(P) such that

M
(
E ,LP(Prob(P)do(X:=x))

)
|= ϕ and M(E ,LP(Prob(P))) |= (E = e).

These are exactly the possible worlds that make the query ϕ true after intervention while

the observation E = e is true before intervening. Hence, we can consult the proof of

Theorem 3 to see that (B1) computes the same value as Algorithm 6.

Proof of Theorem 4.5

Single World Intervention Programs 25

By Theorem 7, Lemma 8 and Lemma 9 the right-hand side of (B2) for LPAD(P) is the
sum of the conditional probabilities π(E|E = e) of all possible worlds E of P such that

M
(
E ,LP(Pdo(X:=x))

)
|= ϕ and M(E ,LP(P)) |= (E = e).

These are exactly the possible worlds that make the query ϕ true after intervention while

the observation E = e is true before intervening. Hence, we can consult the proof of

Theorem 3 to see that (B1) computes the same value as Algorithm 6.

Appendix D Proof of Theorem 5.1

Proof

We summarize notation from Kiesel et al. (2023) [12]. First, we define two propositional

alphabets PS to handle the evidence from the source world and PI to handle the inter-

ventions in the counterfactual. In particular, we set

e(PS) = e(P) and i(PI) = i(P),

and we require that

PS ∩ PI = ∅
In this way, we obtain maps

e/i : P → PS/I by p 7→ pS/I ,

that easily generalize to literals, clauses, and programs.

Furthermore, we define the counterfactual semantics of P by

PK = PS ∪ PI .

Next, we intervene in PK for the counterfactual query is for the probability of a con-

sequent ϕI in the interventional world given evidence ES = e in the source world, af-

ter applying an intervention fix(X := x) to the interventional part of the program.

Let PK,fix(X:=x) denote this modified program given by Algorithm 3. Finally, we ob-

tain the desired probability πSCM
P (ϕ | E = e, fix(X := x)) by querying the program

PK,fix(X:=x) for the conditional probability π(ϕ | E = e).

26 Habib et al.

πSCM
P (ϕ | E = e, fix(X = x)) := πPK ,fix(X:=x)(ϕ

I | ES = e)

=
πPK ,fix(X:=x)(ϕ

I ∧ES = e)

πPK ,fix(X:=x)(ES = e)

=
πPK ,fix(X:=x)(ϕ

I ∧ES = e)

πPK (ES = e)

=
1

πPK (ES = e)

∑
ε

πPK (ε) · [ε |=PK
fix(X:=x)

(ϕI ∧ES = e)]

=
1

πP(E = e)

∑
ε

πP(ε) · [ε |=PK ES = e] · [ε |=PK
fix(X:=x)

ϕI]

=

∑
ε πP(ε) · [ε |= E = e] · [ε |=Mx ϕ]∑

ε πP(ε) · [ε |= E = e]

=
PSCM (ϕX←x,E = e)

PSCM (E = e)

= PSCM (ϕ | E = e, fix(X := x))

	Introduction
	Our Contributions

	Preliminaries
	Causal Models and Counterfactuals
	ProbLog

	Challenges of the Twin Network in ProbLog
	Single World Intervention Programs
	Experiments
	Results and Discussion

	Conclusion
	Appendix A Notation and Definitions
	Appendix B Proofs of Theorems 3.1, 4.1, 4.2
	Appendix C Proofs of Theorem 4.4 and Theorem 4.5
	Appendix D Proof of Theorem 5.1

