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Abstract—Many machine learning problems can be formulated as non-convex multi-player games. Due to non-convexity, it is challenging
to obtain the existence condition of the global Nash equilibrium (NE) and design theoretically guaranteed algorithms. This paper studies
a class of non-convex multi-player games, where players’ payoff functions consist of canonical functions and quadratic operators. We
leverage conjugate properties to transform the complementary problem into a variational inequality (VI) problem using a continuous
pseudo-gradient mapping. We prove the existence condition of the global NE as the solution to the VI problem satisfies a duality
relation. We then design an ordinary differential equation to approach the global NE with an exponential convergence rate. For practical
implementation, we derive a discretized algorithm and apply it to two scenarios: multi-player games with generalized monotonicity and
multi-player potential games. In the two settings, step sizes are required to be O(1/k) and O(1/

√
k) to yield the convergence rates of

O(1/k) and O(1/
√
k), respectively. Extensive experiments on robust neural network training and sensor network localization validate our

theory. Our code is available at https://github.com/GuanpuChen/Global-NE.

Index Terms—non-convex, multi-player game, Nash equilibrium, duality theory.

✦

1 INTRODUCTION

MANY advanced learning approaches in artificial in-
telligence are developed for multi-agent systems,

distributed designs, or federated frameworks [1], [2], [3], [4].
As one of the most popular schemes, adversarial learning is
gradually extended to involve multiple agents or players [5],
[6], not restricted to classic models with one generator and
one discriminator. Also, most complex systems involve the
interaction and interference of multiple participants, such
as smart grids [7], intelligent transportation [8], and cloud
computing [9]. The core ideology is to utilize the autonomy
of individual computing units in large-scale tasks. Traditional
optimization frameworks or min-max adversarial protocols
will no longer be universally applicable.

Game theory exploits the advantages in such multi-player
scenarios and plays an essential role at the forefront of con-
temporary machine learning, such as adversarial training and
reinforcement learning [10], [11], [12]. The Nash equilibrium
(NE) [13] has become a popular concept in various fields like
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applied mathematics, computer sciences, and engineering,
in addition to economics. When all players’ strategies reach
an NE, no one can benefit from changing their strategy
unilaterally. This paper focuses on a typical class of non-
convex multi-player games. Player i ∈ {1, . . . , N} mini-
mizes its own payoff function Ji(xi,x−i) : RNn → R, which
is influenced by both its own strategy xi ∈ Rn and others’
decisions x−i ∈ R(N−1)n. Specifically, player i’s non-convex
payoff function is

Ji(xi,x−i) = Ψi(Λi(xi,x−i)).

Here, Λi : RNn → Rqi is a vector-valued nonlinear operator,
where Λi = (Λi,1, · · · ,Λi,qi)

T , and for k ∈ {1, · · · , qi}, Λi,k :
RNn → R is a quadratic function in xi. Besides, Ψi : Rqi →
R is a canonical function [14], whose gradient ∇Ψi is a one-
to-one mapping from the primal space to the dual space.

This setting has been broadly investigated in various
scenarios, including robust network training and sensor
network localization. In sensor network localization [15],
[16], for example, xi is the location of an non-anchor node
and Λi,k represents the estimated distance between xi and
x−i. Also, Ψi is reified as the Euclidean norm to measure the
distance errors. In robust neural network training [17], [18],
xi is the model parameter and Λi,k serves as the output of
training data. Also, Ψi represents the cross-entropy function.
Moreover, this non-convex setting may also inspire solutions
to resource allocation problems in unmanned vehicles [19]
and secure transmission [20]. In this scenario, xi stands for
the transmit resources, Ψi denotes the transmission cost, and
Λi,k is a logarithmic-posynomial function.

Given the above formulation, it is essential to seek the
global Nash Equilibrium (NE) from both game-theoretic and
machine-learning perspectives. The equilibrium characterizes
a global optimum solution, as no player will deviate from
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their strategy unilaterally given others’ strategies. However,
finding the global optimum or equilibrium in non-convex
settings remains an open problem [21], [22]. This challenge
arises from not only the lack of powerful tools compared
to convex categories but also the diversity of non-convex
structures, which may not be addressed by a common
methodology. Despite the efficient tools available for convex
conditions that have led to achievements in multi-player
game models [23], [24], [25], they may fall short when dealing
with non-convexity. Rather than reaching the global NE, these
methods may become trapped in local NE or approximations
when tracking along pseudo-gradients. On the other hand,
inspiring breakthroughs have been made for solving two-
player min-max games in various non-convex situations,
such as Polyak-Łojasiewicz cases [17], [26] and concave cases
[27], [28], Nonetheless, they may not be applicable to multi-
player settings, because the global stationary conditions are
interdependent and cannot be addressed individually by
each player. Thus, novel processes are necessary to explore
the existence of the global NE and design algorithms to
approach it.

To address the non-convexity in payoff functions, we
initially employ the canonical duality theory [14] and es-
tablish a one-to-one duality relation through a conjugate
transformation [29]. By generalizing to continuous vector
fields, we express the coupled stationary conditions of the
transformed problem as a continuous mapping. Thus, finding
the global NE of all players can be achieved by verifying a
fixed point of this continuous mapping. We then cast the
fixed point seeking problem to solve a variational inequality
(VI) problem [30]. By following the above procedures, we
can transform the global NE of a non-convex multi-player
game into the solution to a VI problem. This simplifies the
solving process, as all players’ coupled stationary conditions
are considered from a holistic perspective. Thereby, we
can determine the existence condition of the global NE in
such a non-convex multi-player game: the solution to the VI
problem is required to satisfy the duality relation.

On this basis, we then propose a conjugate-based ordinary
differential equation (ODE) to solve the VI problem. The ODE
evolves in the dual spaces of both decision variables and
canonical variables, rather than in the primal spaces. Next,
we enforce a mapping from the dual space to the primal
space using the gradient information from differentiable
Legendre conjugate functions [31]. We demonstrate that the
equilibrium of this conjugate-based ODE corresponds to the
global NE of this non-convex multi-player game when the
aforementioned existence condition is verified. Besides, we
provide rigorous convergence analysis on the continuous
dynamics and show that the ODE exhibits an exponential
convergence rate.

For practical implementation, we further derive a discrete
algorithm based on the proposed conjugate-based ODE.
We analyze the step-size settings for achieving desired
convergence rates in two typical non-convex game models.
Specifically, with a step size of O(1/k), the convergence
rate achieves O(1/k) in a class of multi-player games with
generalized monotonicity [25], [32]; while with another step
size of O(1/

√
k), the convergence rate achieves O(1/

√
k) in

a class of multi-player potential games [15], [16].
We conduct extensive experiments in robust neural

network training and sensor network localization. Our
experimental results demonstrate that our algorithm con-
verges to the global NE of non-convex games, avoid-
ing being stuck in local NE or approximate NE. Fur-
thermore, in order to show the superior performance,
we compare our approach with several popular methods
in these multi-player settings. Our code is available at
https://github.com/GuanpuChen/Global-NE.

To the best of our knowledge, this is the first paper to
address the existence condition and implementation algo-
rithms for approaching the global NE in such a non-convex
multi-player game. Our contributions are summarised below.

• Existence condition. We employ canonical duality
theory to transform the non-convex multi-player
game into a complementary dual problem. We convert
solving the problem of all players’ stationary point
into solving a VI problem. We then establish the
existence condition of the global NE: the solution to
the VI problem is required to satisfy a duality relation.

• Conjugate-based ODE. We propose a conjugate-
based ODE for solving the VI problem. The ODE
evolves in the dual spaces of both decision variables
and canonical variables. The equilibrium of the ODE
is the global NE of this non-convex multi-player game,
subject to the verification of the existence condition.
The convergence analysis of the ODE is provided,
together with its exponential convergence rate.

• Discrete algorithm. We derive a discrete algorithm
based on the ODE for practical implementation. We
apply it to two typical non-convex scenarios: 1) a
convergence rate of O(1/k) in multi-player games
with generalized monotonicity by a step size of
O(1/k); 2) a convergence rate of O(1/

√
k) in multi-

player potential games by a step size of O(1/
√
k).

Notations Let Rn(or Rm×n) be the set of n-dimensional
(or m-by-n) real column vectors (or matrices). Let 1n(or 0n)
be the n-dimensional column vector with all elements of
1 (or 0). Take col{x1, . . . , xn} = (xT

1 , . . . , x
T
n )

T and ∥ · ∥ as
the Euclidean norm of vectors. Let ∇f denote function f ’s
gradient and ∇xf denote the partial derivative of function
f in x. Additional,

∏
represents the product of all values

in range series, ⪰ refers to positive semi-definiteness, and
O describes the asymptotic upper bound of a function
magnitude.

2 RELATED WORK

Convex multi-player games: Many theoretical results in
multi-player games have been built on fundamental convex-
ity assumptions [23], [24], [25], [33]. Within the framework
of convexity, extensive research has been conducted on
seeking NE in various multi-player game models, including
aggregative games [32], [34], potential games [16], [35], and
sub-network games [36], [37]. For example, [25], [35] directly
required convex payoffs on each player’s decision variable,
while [24], [32] needed strongly/strictly monotone pseudo-
gradients to address the interaction of all players’ decisions.
Despite the efficient tools available within convex conditions
that have led to fruitful achievements, they may fall short
when encountering non-convexity in practical circumstances.

https://github.com/GuanpuChen/Global-NE.git
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Non-convex two-player min-max problems: Significant
breakthroughs have been made in solving non-convex two-
player min-max problems, including Polyak-Łojasiewicz
cases [17], [26], strongly-concave cases [27], [28], and general
non-convex non-concave cases [38], [39]. The popularity of
these approaches is attributed to the success of GANs and
their variants [40], [41]. For instance, [38] introduced two
time-scale update rules with stochastic gradient descent to
find a local NE in GANs, while [39] developed an optimistic
mirror descent algorithm to explore NE in GANs with
theoretical guarantees. However, it is not straightforward
and realistic to directly generalize the above two-player
approaches to solve multi-player settings. This is due to
the mutual coupling of global stationary conditions among
multiple players, which cannot be handled individually,
unlike two-player situations.

Non-convex multi-player games with local NE or
approximations: Initial efforts have been made to solve non-
convex multi-player games. [42] proposed a best-response
scheme for Nash stationary points of a class of non-convex
games in signal processing, and then [43] extended this
method to multi-player bi-level games with non-convex
constraints. Additionally, [44] introduced a gradient-based
Nikaido-Isoda function to find Nash stationary points in
a reformulated non-convex game, while [45] designed a
gradient-proximal algorithm for approximate NE in a class
of non-convex aggregative games. The algorithms within
these works often result in local NE or Nash stationary
points, which are dependent on the initial points. Further
investigation is needed to guarantee the existence of the
global NE and to design algorithms for seeking the global
NE in non-convex multi-player game models.

Similar non-convex structures in optimization: Related
results exist in solving such non-convex problems where the
objectives or payoffs are composited of canonical functions
and quadratic operators. However, these results are some-
what premature. [46] considered approximate optimization
to relax such non-convex constraints and provided optimality
conditions for the simplified problem, while [47] proposed
similar sufficient conditions and discussed the existence of
the global optimum using canonical duality theory. Building
on this basis, [48] investigated the global optimal solution
of such non-convex optimization problems in a distributed
framework over multi-agent networks, while [49] focused
on approximating the solutions of discrete variable topology
problems with multiple constraints. We notice that, despite
being regarded as an important class of non-convex problems,
most existing work has focused on the optimization perspec-
tive. Nevertheless, considering the interference and interac-
tion among multiple players, the global stationary conditions
are coupled and can not be handled individually by each
player. Therefore, the aforementioned optimization methods
may not completely match our problems. The results in this
paper will help elucidate the complex interactions among
players and provide reliable insights for addressing large-
scale game models in the future.

3 PRELIMINARIES ON GAME THEORY

We begin our study of the non-convex games with multiple
players indexed by I = {1, · · · , N}. For i ∈ I , the ith player

has an action variable xi ∈ Rn in an action set Ωi ⊆ Rn,
where Ωi is compact and convex, and Ω =

∏N
i=1 Ωi. Let x =

col{x1, · · · , xN} ∈ RnN be the profile of all players’ actions,
while x−i = col{x1, · · · , xi−1, xi+1, · · · , xN} ∈ Rn(N−1) be
the profile of all players’ actions except for the ith player’s.
Moreover, the ith player has a payoff function Ji(xi,x−i) :
Ω → R, which depends on both xi and x−i, and is twice
continuously differentiable with respect to xi. Given x−i, the
ith player aims to solve the following problem

min
xi

Ji (xi,x−i) , s.t. xi ∈ Ωi. (1)

In this paper, we focus on a typical class of non-convex multi-
player games, where the payoff function of the ith player is
endowed with the following structure

Ji(xi,x−i) = Ψi(Λi(xi,x−i)). (2)

Here Λi : RNn → Θi ⊆ Rqi is a vector-valued nonlinear
operator with Λi = (Λi,1, · · · ,Λi,qi)

T . For k ∈ {1, · · · , qi},
each Λi,k : RNn → R is quadratic in xi, whose second-order
partial derivative in xi is both xi-free and x−i-free, e.g.,
Λi,k = xT

i Ai,kxi+
∑

i̸=j x
T
i Bi,kxj . Moreover, Ψi : Θi → R is

a convex differential canonical function [14], with its gradient
∇Ψi : Θi → Θ∗

i being a one-to-one mapping. Such non-
convex structures composited of canonical functions and
quadratic operators arise in various applications, including
robust network training [17], sensor localization [16], and
GANs [50]. We provide specific examples in the following to
illustrate the above non-convex model intuitively.

Example 1 (Euclidian distance function).∑
j∈N i

s

(∥xi − xj∥2 − di,j)
2, (3)

where Ψi =
∑

j∈N i
s
ΛT
i,jΛi,j and Λi,j = ∥xi − xj∥2 −

dij . Function (3) usually serves as the payoff in sensor
network localization [15], [16], [51], where xi ∈ Ωi is the
location of non-anchor node i, N i

s is the neighbors of
node i, and dij describes the distance of nodes.

Example 2 (Log-sum-exp function).

log
[
1 + exp(−a1x

T
i Axi − 2a1

∑N

j ̸=i,j=1
xT
i Axj (4)

−a1
∑N

j ̸=i,j=1
xT
j Axj − a2β

T
1 xi−

∑N

j ̸=i,j=1
a2β

T
1 xj)

]
,

where Ψi = β1 log[1 + expΛi] and Λi = −a1x
T
i Axi −

2a1
∑N

j ̸=i,j=1 x
T
i Axj − a1

∑N
j ̸=i,j=1 x

T
j Axj − a2β

T
1 xi −∑N

j ̸=i,j=1 a2β
T
1 xj . Function (4) usually appears in the

tasks like robust neural network training [18], [52], [53],
where xi is the neural network parameter and xj is the
perturbation. Then, a1 and a2 are positive parameters,
while β1 is the training data with A = β1β

T
1 . More details

of (4) can be found in Supplementary Materials.

Example 3 (Log-posynomial function).

log(xT
i Cixi + xT

i Dix−i)
−1, (5)

where Ψi = log(Λi)
−1 and Λi = xT

i Cixi + xT
i Dix−i.

Function (5) usually occurs in resource allocation [19],
[20], [54], where xi stands for transmitting resources, and
matrices Ci and Di represent the correlation coefficients.
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Fig. 1. A non-convex two-player demo with log-sum-exp payoffs in (4).

We introduce the following important concept for the
non-convex multi-player game (1).

Definition 1 (global Nash equilibrium). A strategy profile
x♢ ∈ Ω is said to be a global Nash equilibrium (NE) of
(1), if for all i ∈ I ,

Ji(x
♢
i ,x

♢
−i) ≤ Ji(xi,x

♢
−i), ∀xi ∈ Ωi. (6)

The global NE characterizes a strategy profile in which each
player adopts its globally optimal strategy. In other words,
given others’ actions, no player can benefit from unilaterally
changing their decision. In fact, the conception of global
NE discussed here is synonymous with the concept of NE
[13], with the emphasis global in the non-convex formulation
to distinguish it from local NE [17], [38], [42]. Also, we
consider another well-known concept to help characterize
the solutions to (1).

Definition 2 (Nash stationary point). A strategy profile x♢

is said to be a Nash stationary point of (1) if for all i ∈ I ,

0n ∈ ∇xi
Ji(x

♢
i ,x

♢
−i) +NΩi

(x♢
i ), (7)

where NΩi
(x♢

i ) = {s ∈ Rn : sT (x− x♢
i ) ≤ 0,∀x ∈ Ωi} is

the normal cone at point x♢
i on set Ωi.

It is not difficult to find that if x♢ is a global NE, then
it must be a NE stationary point, but the converse is not
necessarily true. For instance, in Fig. 1, the global NE differs
from Nash stationary points, as shown on the surface plot of
one player’s non-convex payoff.

In the case of convex games, most existing research
computes global NE by investigating Nash stationary points
[24], [25], [32]. However, considering the bumpy geometric
structure of the non-convex payoff function, as pointed out
by [17], [55], one cannot expect to find a global NE of (1) only
through the Nash stationary conditions in (7). Thereby, we
aim at obtaining a global NE of such a non-convex multi-
player model (1), and we begin the exploration in the sequel.

4 EXISTENCE CONDITION OF GLOBAL NE
In this section, we primarily explore the existence of global
NE through the following procedures:

i) We employ canonical duality theory to transform the
original game (1) into a complementary dual problem
and investigate the relationship between the stationary
points of the dual problem and the Nash stationary
points of game (1);

ii) We adopt a sufficient feasible domain for the introduced
conjugate variable to investigate the global optimality
of the stationary points;

iii) We cast the task of solving all players’ stationary point
profile of the dual problem into solving a variational
inequality (VI) problem with a continuous pseudo-
gradient mapping;

iv) We provide the existence condition of the global NE for
the non-convex multi-player game: the solution to the
VI problem is required to satisfy a duality relation.

Step 1: Complementary dual problem
We first take ξi = Λi(xi,x−i) ∈ Θi in the payoff

function of (2), which is referred to as a canonical measure,
following the definition of canonical functions. Since Ψi(ξi)
is a convex canonical function, the one-to-one duality relation
σi = ∇Ψi (ξi) : Θi → Θ∗

i implies the existence of the
conjugate function Ψ∗

i : Θ∗
i → R, which can be uniquely

described by the Legendre transformation [14], [29], [56].

Ψ∗
i (σi) = ξTi σi −Ψi (ξi) ,

where σi ∈ Θ∗
i is a canonical dual variable. Take σ =

col{σ1, · · · , σN} and Θ∗ =
∏N

i=1 Θ
∗
i ⊆ Rq with q =

∑N
i=1 qi.

Then, the complementary function Γi : Ω×Θ∗
i → R referring

to the canonical duality theory can be defined as

Γi(xi, σi,x−i) =ξTi σi −Ψ∗
i (σi)

=σT
i Λi (xi,x−i)−Ψ∗

i (σi) . (8)

Lemma 1. For a profile x♢, if there exists σ♢ ∈ Θ∗ such that
for i ∈ I , (x♢

i , σ
♢
i ) is a stationary point of complementary

function Γi(xi, σi,x
♢
−i), then x♢ is a Nash stationary

point of game (1).

Lemma 1 establishes the equivalency relationship of
stationary points between (8) and (1). This indicates that we
can close the duality gap between the non-convex original
game and its canonical dual problem using the canonical
transformation. More detailed proof of Lemma 1 can be
found in the Supplementary Materials.
Step 2: Sufficient feasible domain

For i ∈ I , the second-order partial derivative of
Γi(xi, σi,x−i) in xi is

Pi(σi) = ∇2
xi
Γi =

∑qi

k=1
[σi]k∇2

xi
Λi,k(xi,x−i).

Recall that Λi : Ω → Θi is a quadratic operator and ∇2
xi
Λi

is both xi-free and x−i-free (see the cases in (3)-(5)). Thus,
Pi(σi) is a linear combination of [σi]k. On this basis, we
introduce the following set of σi for i ∈ I .

E +
i = Θ∗

i ∩ {σi : Pi(σi) ⪰ κxIn}, (9)

where the constant κx > 0 and we further denote

E + = E +
1 × · · · × E +

N .

It follows from the compactness of Ωi and Θi that Θ∗
i is

compact. Thus, E +
i is compact for i ∈ I . When σi ∈ E +

i , the
positive definiteness of Pi(σi) implies that Γi(xi, σi,x−i)
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is convex with respect to xi. Besides, the convexity of
Ψi(ξi) indicates that its Legendre conjugate Ψ∗

i (σi) is also
convex. Hence, the complementary function Γi(xi, σi,x−i)
is concave in σi. This convex-concave property of Γi enables
further investigation into the optimality of the stationary
points of (8), namely, the optimality of the Nash stationary
point of (1).
Remark 1. The computation of E +

i is usually not so hard
in most practical cases. For example, take the payoff
function in (3) with i = 1, 2 and n = qi = 1. Thus, the
complementary function is Γi(xi, σi, x3−i) = σi((xi −
x3−i)

2 − di,3−i) − σ2
i /4, where xi ∈ Ωi = [a, b] and

σi ∈ Θ∗
i = [−2di,3−i, 2(b − a)2 − 2di,3−i]. Also, E +

i =
{σi : 2σi ≥ κx}∩Θ∗

i = [κx/2, 2(b−a)2−2di,3−i], which
can serve as the feasible constraint for the dual variable σi.
We provide more examples in Supplementary Materials
to show the derivation and computation of E +

i in some
large-scale problems.

Step 3: Variational inequality
Due to the interference of x−i, the transformed problem

actually reflects a cluster of Γi with a mutual coupling of
stationary conditions, rather than a deterministic one. Thus,
unlike classic optimization works [14], [46], [47], the station-
ary points for player i cannot be calculated independently.
We should consider the computation of all players’ stationary
points and discuss its optimality in an entire perspective.

Variational inequalities (VI) assist us in advancing [30].
Let z = col{x,σ} and Ξ = Ω × E +. Denote the pseudo-
gradient of (8) by the following continuous mapping

F (z) = col
{
col{

∑qi

k=1
[σi]k∇xi

Λi,k(xi,x−i)}Ni=1,

col{−Λi(xi,x−i) +∇Ψ∗
i (σi)}Ni=1

}
.

Note that the interaction of all players’ variables is reflected
in mapping F of the partial derivatives of all players’
complementary functions (8). Then, solving the solution to
(8) can be regarded as solving a VI problem VI(Ξ, F ), i.e., to
find z♢ ∈ Ξ such that

(z − z♢)TF (z♢) ≥ 0, ∀z ∈ Ξ. (10)

Step 4: Existence condition
Based on the above steps, we obtain the following

existence condition for identifying the global NE of (1).
Theorem 1. There exists x♢ as the global NE of the non-

convex multi-player game (1) if (x♢,σ♢) is a solution to
VI(Ξ, F ) with σ♢

i = ∇Ψi (ξi) |ξi=Λi(x♢
i ,x♢

−i)
for i ∈ I .

The proof sketch can be summarized below. If there exists
σ♢ ∈ E + such that z♢ = col{x♢,σ♢} is a solution to
VI(Ξ, F ), then it satisfies the first-order condition of the
VI problem. Together with σ♢

i = ∇Ψi (ξi) |ξi=Λi(x♢
i ,x♢

−i)
, we

claim that the canonical duality relation holds over Θi × E +
i

for i ∈ I . It follows from Lemma 1 that the solution to
VI(Ξ, F ) is a stationary point profile of (8) on Θi × Θ∗

i .
We can further verify that the complementary function
Γi(xi, σi,x−i) is concave in dual variable σi and convex in
xi. In this light, we obtain the global optimality of (x♢,σ♢)
on Ω× E +, that is, for xi ∈ Ωi and σi ∈ E +

i ,

Γi(x
♢
i , σi,x

♢
−i) ≤ Γi(x

♢
i , σ

♢
i ,x

♢
−i) ≤ Γi(xi, σ

♢
i ,x

♢
−i).

This confirms that x♢ is the global NE of (1). The complete
proof of Theorem 1 can be found in the Supplementary
Materials.

The result in Theorem 1 reveals that once the solution
of VI(Ξ, F ) is obtained, we can check whether the duality
relation σ♢

i = ∇Ψi (ξi) |ξi=Λi(x♢
i ,x♢

−i)
holds, so as to identify

whether the solution of VI(Ξ, F ) is a global NE. Based on the
above conclusion, we are motivated to solve VI(Ξ, F ) using
its first-order conditions and employ the duality relation as a
criterion for identifying the global NE.
Remark 2. The foundation for realizing the above idea is the

nonempty set E +
i . It is possible to obtain an empty E +

i

in reality if Pi(σi) ⪰ κxIn has no intersection with Θ∗
i ,

rendering the above duality theory approach unavailable
in such situations. Thus, E +

i should be effectively checked
once the problem is formulated. Such a process has also
been similarly employed in some classic optimization
works to solve non-convex problems [46], [47], [48],
[49], [57]. In addition, this is why we cannot directly
employ the standard Lagrange multiplier method and
the associated KKT theory. We need to confirm a feasible
domain of multiplier σi by utilizing canonical duality
information (referring to Θ∗

i ).

Remark 3. By generalizing the coupled stationary conditions
to continuous vector fields, we compactly formulate
these stationary conditions of the dual problem (8) as
a continuous mapping in a VI problem VI(Ξ, F ). Thus,
seeking all players’ stationary points (or Nash stationary
points) can be accomplished by verifying a fixed point.
The seed of employing VI ideas in games dates back to
[58], along with wide-ranging applications that can be
found in a survey [59]. Moreover, non-convex formulation
(1) may have more than one global NE due to the
symmetry of Ψ(·). In such cases, the unique global NE
can be regained by additionally introducing linear or
quadratic terms as a perturbation to break the symmetry,
which is commonly adopted in [15], [51].

5 APPROACHING GLOBAL NE VIA CONJUGATE-
BASED ODE
In this section, we propose an ODE to seek the solutions
to VI(Ξ, F ) (10) with the assistance of complementary
information (the Legendre conjugate of Ψi and the canonical
dual variable σi). An ODE provides continuously evolved
dynamics, which help reveal how the primal variables and
the canonical dual ones influence each other via conju-
gate gradient information. Moreover, analysis techniques
in modern calculus and nonlinear systems for providing
theoretical guarantees of ODEs may lead to results with mild
assumptions.

5.1 ODE Design
Local set constraints of variables, like Ωi and E +

i of (10), are
usually equipped with specific structures in various tasks.
We employ conjugate properties of the generating functions
within Bregman divergence to design ODE flows. Take ϕi(xi)
and φi(σi) as two generating functions, where ϕi(xi) is µx-
strongly convex and Lx-smooth on Ωi, and φi(σi) is µσ-
strongly convex and Lσ-smooth on E +

i . It follows from the
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TABLE 1
Closed-form conjugate gradients with different generating functions.

Feasible set Generating function Conjugate gradient

General convex set Ω 1
2
∥x∥22 argminx∈Ω

1
2
∥x−y∥2

Non-negative orthant Rn
+

∑n
l=1x

l log(xl)−xl exp(y)

Unit square [a, b]n {xl∈R:a≤xl≤b}
∑n

l=1(x
l−a)log(xl−a)

+(b−xl)log(b−xl)
col{a+b exp(yl)

exp(yl)+1
}nl=1

Simplex ∆n {x∈Rn
+ :

∑n
l=1x

l = 1}
∑n

l=1x
l log(xl) col{ exp(yl)∑n

j=1 exp(yj)
}nl=1

Euclidean sphere Bn
ρ (w) {x∈Rn :∥x−w∥22≤p} −

√
p2−∥x−w∥22 py[

√
1+∥y∥22]−1−w

Fenchel inequality [31] that the Legendre conjugate ϕ∗
i and

φ∗
i are convex and differentiable. Specifically, for yi ∈ Rn,

ϕ∗
i (yi) ≜ minxi∈Ωi

{−xT
i yi + ϕi(xi)},

while for νi ∈ Rqi ,

φ∗
i (νi) ≜ minσi∈E +

i
{−σT

i νi + φi(σi)}.

Their conjugate gradients accordingly satisfy the relations

∇ϕ∗
i (yi) = argminxi∈Ωi

{
−xT

i yi + ϕi(xi)
}
, (11)

∇φ∗
i (νi) = argminσi∈E +

i
{−σT

i νi + φi(σi)}. (12)

On this basis, for player i ∈ I , the conjugate-based ODE
for seeking the global NE of the non-convex multi-player
game (1) is

ẏi = −σT
i ∇xiΛi (xi,x−i) +∇ϕi(xi)− yi

ν̇i = Λi (xi,x−i)−∇Ψ∗
i (σi)+∇φi(σi)−νi

xi = ∇ϕ∗
i (yi)

σi = ∇φ∗
i (νi) .

(13)

The initial condition is yi(0) = yi0 ∈ Rn, νi(0) = νi0 ∈ Rqi ,
xi(0) = ∇ϕ∗

i (yi0), and σi(0) = ∇φ∗
i (νi0). Here, t represents

continuous time, and we drop t in the dynamics for a concise
expression.

We give an explanation of two important operations for
designing the conjugate-based ODE (13). On the one hand,
we design the dynamics for yi(t) and νi(t) in dual spaces
using the stationary conditions in (10). The dynamic updating
of yi and νi not only depends on player i’s own decision
but also requires knowledge of other players’ decision x−i

contained in the function Λi and its partial derivative.
According to Γi in (8), the terms −σT

i ∇xi
Λi(xi,x−i) and

Λi(xi,x−i) − ∇Ψ∗
i (σi) represent the directions of gradi-

ent descent and ascent, respectively. Besides, ∇ϕi(xi) and
∇φi(σi) are regarded as damping terms in ODE to avoid yi
and νi going to infinity [60], [61], [62]. On the other hand,
the mapping from dual spaces back to primal spaces is
implemented to update xi(t) and σi(t) by virtue of conjugate
gradients ∇ϕ∗

i and ∇φ∗
i , serving as the output feedback in

system updating.
In fact, the conjugate-based idea not only helps solve the

inherent non-convexity in such a class of multi-player games,
but also brings the convenience of dealing with local set
constraints with specific structures. It’s important to note
that the mappings via conjugate gradients ∇ϕ∗

i and ∇φ∗
i

are established based on valid generating functions rather
than a conventional Euclidean norm. This yields explicit map
relations between dual spaces and primal spaces to flexibly
deal with diverse constraint conditions.

Remark 4. Without subscript i in Ω, we give some practical ex-
amples to show different closed-form conjugate gradients.
When Ω is an n-dimensional unit simplex of soft-max out-
put layers in GANs [41], i.e., ∆n ={x∈Rn

+ :
∑n

l=1x
l = 1},

a widely used generating function is the (negative)
Gibbs–Shannon entropy ϕ(x) =

∑n
l=1x

l log(xl), which
yields the closed-form conjugate gradient ∇ϕ∗(y) =

col{ exp(yl)∑n
j=1 exp(yj)}

n
l=1. When Ω is a Euclidean sphere of

parameter perturbation in adversarial training [18], i.e.,
Bn
ρ (w) = {x ∈ Rn : ∥x− w∥22 ≤ p}, the generating

function can be chosen as ϕ(x) = −
√
p2−∥x−w∥22,

which explicitly yields ∇ϕ∗(y) = py[
√
1+∥y∥22]−1−w.

Moreover, in sensor network localization [51], we can
take ϕ(x) = (x− a) log(x− a) + (b− x) log(b− x) since
Ω = [a, b] has a unit-square form. It brings the closed-
form ∇ϕ∗(y) = col{a+b exp(yl)

exp(yl)+1
}nl=1. Readers can check

Table 1 for more cases.

5.2 Convergence Analysis

Next, we investigate the trajectories of the variables in(13)
and analyze their convergence. Similarly to x and σ,
compactly denote y ∈ RnN and ν ∈ Rq. Denote the
profile of all Λi by Λ (x) = col {Λi (xi,x−i)}Ni=1 , and
the augmented partial derivative profile by G(x,σ) =

col
{
σT
i ∇xiΛi (xi,x−i)

}N
i=1

.Then, ODE (13) can be com-
pactly presented by

ẏ = −G(x,σ) +∇ϕ(x)− y

ν̇ = Λ(x)−∇Ψ∗ (σ) +∇φ(σ)− ν

x = ∇ϕ∗(y)

σ = ∇φ∗ (ν) .

(14)
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Lemma 2. Suppose that (y♢,ν♢,x♢,σ♢) is an equilibrium
point of ODE (14). If σ♢

i = ∇Ψi (ξi) |ξi=Λi(x♢
i ,x♢

−i)
for

i ∈ I , then x♢ is the global NE of (1).

Lemma 2 establishes the relationship between the equilib-
rium of (14) (or (13)) and the global NE of (1). More proof
details of Lemma 2 can be found in the Supplementary
Materials due to space limitations.

The conjugate-based ODE (13) is designed to solve
VI(Ξ, F ) (10), i.e, the equilibrium point of (13) corresponds to
the solution to (10). Recall the existence condition in Theorem
1. When the duality relation σ♢

i = ∇Ψi (ξi) |ξi=Λi(x♢
i ,x♢

−i)
is satisfied, we can derive that the equilibrium of ODE (13)
realizes the global NE of non-convex multi-player game
(1). The subsequent theorems present the main convergence
results of ODE (13), implying that global NE can be found
along the trajectory of ODE (13).

Theorem 2. If E +
i is nonempty for i ∈ I , then ODE

(14) (or (13) is bounded and convergent. Moreover, if
the convergent point (y♢,ν♢,x♢,σ♢) satisfies σ♢

i =
∇Ψi (ξi) |ξi=Λi(x♢

i ,x♢
−i)

for i ∈ I , then x♢ is the global
NE of (1).

In addition, given more information of function Ψi (·), we
can derive the convergence rate of (13).

Theorem 3. For i ∈ I , if E +
i is nonempty and Ψi (·) is 1

κσ
-

smooth, then (13) converges at an exponential rate with

∥z(t)− z♢∥ ≤
√

τ

µ
∥z(0)∥ exp(− κ

2τ
t),

where µ = min{µx/2, µσ/2}, κ = min{κσ, κx}, and τ =
max{Lx/2µx, Lσ/2µσ}.

Here, we outline a proof for Theorems 2 and 3. We first
prove that the trajectory (y(t), x(t), ν(t), σ(t)) is bounded
along ODE (13). To achieve this, we construct a Lyapunov
candidate function using the Bregman divergence as follows

V1 =
N∑
i=1

Dϕ∗
i
(yi, y

♢
i ) +Dφ∗

i
(νi, ν

♢
i ).

We can carefully verify that

V1 ≥ µx

2

∥∥x− x♢
∥∥2 + µσ

2

∥∥σ − σ♢
∥∥2 .

This means that V1 is positive semi-definite, and is radially
unbounded in x(t) and σ(t). The techniques used so far
include the convexity of generating functions, the canonical
dual relations, and the optimal conditions of VI problems,
although the derivations are not straightforward. We next
investigate the derivative of V1 along the ODE. We can
cautiously obtain that dV1/dt ≤ 0, which yields that the
trajectories of x(t) and σ(t) are bounded along ODE (13).
Likewise, we can conclude that y(t) and ν(t) are also
bounded. The above completes most parts in the proof of
Theorem 2, except for some discussions on the invariant sets
of the ODE. For Theorem 3, we can get dV1/dt ≤ −κ

τ V1

more than dV1/dt ≤ 0 thanks to the smoothness of function
Ψi. This eventually results in the exponential rate. More
detailed proofs of Theorems 2 and 3 can be found in the
Supplementary Materials.

Remark 5. We summarize the road map for seeking global
NE in this non-convex game for clarity. First, we should
check whether E +

i is nonempty upon formulating the
problem. Next, we should seek the solution to VI(Ξ, F )
via ODE flows, wherein the variable σi is restricted
to the nonempty E +

i and the implementation of the
ODE is guaranteed. After obtaining the solution to
VI(Ξ, F ) by convergence, we should finally identify
whether the convergent point satisfies the duality relation
σ♢
i = ∇Ψi (ξi) |ξi=Λi(x♢

i ,x♢
−i)

. If so, the convergent point
is the global NE.

6 DISCRETE ALGORITHM

In this section, we consider deriving the discretization
from the conjugate-based ODE for practical implementation.
Notice that in each step of discrete algorithms, we can
directly compute the minimum of a sub-problem, rather
than track trajectories of conjugate functions with explicit
expressions in the continuous ODE [61], [63]. Tapping into
this advantage, the corresponding discrete algorithm is not
obligated to resort to conjugate information like variables yi
and νi, simplifying the algorithm iteration.

6.1 Discrete Algorithm Design
We redefine an operator generated by Ψi on Θi by

ΠΨi

Θi
(σi) = argminξi∈Θi

{−σT
i ξi +Ψi(ξi)}.

This operator avoids computing the conjugate information
of Ψ∗

i . Also, redefine operators Πϕi

Ωi
(·) = ∇ϕ∗

i (·) in (11) and
Πφi

E +
i

(·) = ∇φ∗
i (·) in (12). With a step size αk at time k, we

discretize the conjugate-based ODE (13) in the following.

Algorithm 1
Input: Step size {αk}, proper generating functions ϕi on Ωi

and φi on E +
i .

Initialize: x0
i ∈ Ωi, σ

0
i ∈ E +

i , i ∈ {1, . . . , N}.
1: for k = 1, 2, · · · do
2: for player i ∈ {1, . . . , N} do
3: compute the conjugate of Ψi:

ξki = ΠΨi

Θi
(σk

i )

4: update the decision variable :
xk+1
i =Πϕi

Ωi
(−αkσ

kT
i ∇xi

Λi(x
k
i ,x

k
−i)+∇ϕi(x

k
i ))

5: update the canonical dual variable:
σk+1
i =Πφi

E +
i

(∇φi(σ
k
i )+αk(Λi

(
xk
i ,x

k
−i

)
− ξki ))

6: end for
7: end for

The update of variable xk+1
i in Algorithm 1 can be

equivalently expressed as

argminx∈Ωi
{⟨x, σkT

i ∇xi
Λi(x

k
i ,x

k
−i)⟩+

1

αk
Dϕi

(x, xk
i )},

where Dϕi
(x, xk

i ) is the Bregman divergence with generating
function ϕi. A similar equivalent scheme can be found in
σk+1
i . These equivalent iteration schemes reveal that parts of

the idea in Algorithm 1, derived from the conjugate-based
ODE (13), actually coincide with the mirror descent method
[60]. Therefore, after computing the conjugate of Ψi and
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plugging it into the update of σi referring to properties
of canonical functions and VIs, readers may also regard
Algorithm 1 from the mirror descent perspective.

6.2 Step Size and Convergence Rate
Hereinafter, we provide the step-size settings and the corre-
sponding convergence rates of Algorithm 1 in two typical
non-convex multi-player games.
Multi-player generalized monotone games: Monotone
games stand for a broad category in game models, where the
pseudo-gradients of all players’ payoffs satisfy the properties
of monotonicity [24], [25], [32]. The monotone property yields
the equivalence between the weak and strong solutions to VI
problems [64], which makes most convex games solvable
by the first conditions in VI. Analogously, we consider
Algorithm 1 in a class of multi-player games with generalized
monotonicity [59], referring to the canonical complementary
function (8), and are rewarded by the following results.
Theorem 4. If E +

i is nonempty and ΠΨi

Θi
(·) is κσ-strongly

monotone, then Algorithm 1 converges at a rate of O(1/k)
with step size αk = 2

κ(k+1) , i.e.,

∥xk − x♢∥2 + ∥σk − σ♢∥2 ≤ 1

k + 1

M1

µ2κ2
,

where µ = min{µx

2 , µσ

2 }, κ = min{κσ, κx}, and M1 is a
positive constant.

The proof sketch is presented as follows. Take a collection of
the Bregman divergence as

∆(z♢, zk+1)≜
N∑
i=1

Dϕi
(x♢

i , x
k+1
i )+Dφi

(σ♢
i , σ

k+1
i ).

Here we employ the three-point identity, Fenchel’s inequality,
the strong monotonicity of F (z), and the optimality of VI
solution to process the above formula. See more details by
Lemmas S3-S5 in the Supplementary Materials. Then, we get

∆(z♢, zk+1)≤∆(z♢, zk)−αkκ∥zk−z♢∥2+α2
k

4µ
∥F (zk)∥2.

By substituting the above with ηk = καk, we take the sum
of these inequalities over k, · · · , 1 and obtain

∆(z♢, zk+1) ≤ η2k(k + 1)
M1

4κ2µ
.

Owing to the step-size setting ηk = καk = 2/(k + 1), we
finally reach the conclusion.
Multi-player potential games: Potential games also have a
wide spectrum of applications such as power allocation [16],
congestion control [35], and multi-target tracking [65]. In a
potential game, there exists a unified potential function for
all players, such that the change in each player’s payoff is
equivalent to the change in the potential function. Hence, the
deviation in the payoff in (2) can be concretely mapped to a
uniformed canonical potential function

Ji (x
′
i,x−i)− Ji(x) = H(x′

i,x−i)−H(x). (15)

Here, H(x) = Ψ(Λ(x)) is endowed with a canonical form.
With a common canonical dual variable σ, the complemen-
tary function is

Γi(xi, σ,x−i) = Γ(x, σ) = σTΛ (x)−Ψ∗ (σ) . (16)

Also, the set E + of σ is in a unified form similar to (9). Take
the weighted averages x̂k and σ̂k in the course of k iterations

as x̂k =
∑k

j=1 αjx
j∑k

j=1 αj and σ̂k =
∑k

j=1 αjσ
j∑k

j=1 αj , respectively. We
give the convergence rate of Algorithm 1 as below.
Theorem 5. If E + is nonempty and players’ payoffs are

subject to the potential function in (15), then Algorithm 1
converges at a rate of O(1/

√
k) with step size αk = 2µd

M2

√
k

,
i.e.,

Γ(x̂k, σ♢)− Γ(x♢, σ̂k) ≤ 1√
k

√
d

µ
M2,

where µ = min{µx

2 , µσ

2 }, and d and M2 are two positive
constants.

We also show an outline of the proof. Take another collection
of the Bregman divergence as

∆̃(z♢, z) ≜ Dφ(σ
♢, σ) +

N∑
i=1

Dϕi
(x♢

i , xi).

By the three-point identity and σ ∈ E + in (9), the VI with
respect to zk can be bounded by the duality gap of the
complementary function, that is,〈

F (zk), z♢ − zk
〉
≤ Γ(x♢, σk)− Γ(xk, σ♢).

Then, we can further derive over 1, · · · , k that
k∑

j=1

αj

(
Γ(xj , σ♢)− Γ(x♢, σj)

)
≤ ∆̃(z♢, z1) +

∑k
j=1 α

2
jM

2
2

4µ
.

Owing to the Jensen’s inequality and the step-size setting
αk = 2

√
µd/M2

√
k, we finally reach the conclusion. The

whole proof can be found in the Supplementary Materials.
Remark 6. In the aforementioned two cases, our algorithm

performs with the best-known convergence rates and
aligns with the results under convex circumstances.
Under strongly monotone conditions, our algorithm
for non-convex settings achieves the same convergence
rate of O(1/k) as convex cases [66], [67]. The proof is
established on the scales from variational theory and
the measurement of Bregman divergence, which reflects
the convergence rate with respect to the equilibrium
point. Regarding potential games, we utilize the unified
potential function to derive the same convergence rate
of O(1/

√
k) as convex cases [68], [69]. The convergence

result is described by the duality gap within the potential
function correspondingly.

7 EXPERIMENTS

In this section, we evaluate the effectiveness of our
approach for seeking the global NE in the practi-
cal tasks of robust neural network training and sen-
sor network localization. Our code is available at
https://github.com/GuanpuChen/Global-NE.

7.1 Robust neural network training

In this part, we show the convergence performance of our
approach under a robust neural network circumstance.

https://github.com/GuanpuChen/Global-NE.git
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(a) x0 = {2,−2.5} (b) x0 = {3.5, 4.25} (c) x0 = {−4,−4}

(d) x0 = {0,−3} (e) x0 = {−1.5, 3.5} (f) x0 = {−4,−0.5}

Fig. 2. Performance of different methods with different initial points.

Model and data pre-processing. Consider an adversarial
training task [17], [18], [52], where the min-max payoff for
two players is

min
x1∈Ω1

E(β0,β2)∼Dmax
x2∈Ω2

Loss(x1,x2,β1,β2)+
λ1

2
∥x1∥2−

λ2

2
∥x2∥2.

(18)
In the above expression (18), Loss refers to the cross entropy
loss function, where x1 is the neural network parameter,
x2 is the parameter perturbation, and β1, β2 are perturbed
training data. D is the local data distribution. Here, β1 is an
adversarial example of a clean one β0 with a perturbation ϵ,
while β2 is the real label of β0. The last two terms of (18) are
regularizers.

Denote (β1,l, β2,l, β0,l) as the l-th data pair. The explicit
form is Loss = −(β2 log(s) + (1 − β2) log(1 − s)), where
s = σ(z) = 1/(1+exp(−a1z

2−a2z)) is a quadratic sigmoid
activation function [70] with two parameters a1, a2 > 0, and
z = (x1 + x2)

Tβ1 is the output. With Al = β1,lβ
T
1,l,

Loss=
1

q

q∑
l=1

log[1+exp(−a1xT
1 Alx1−2a1x

T
1 Alx2−a1x

T
2 Alx2

−a2β
T
1,lx1−a2β

T
1,lx2)]+(1−β2,l)

(
a1x

T
1 Alx1+2a1x

T
1 Alx2

+a1x
T
2 Alx2 + a2β

T
1,lx1 + a2β

T
1,lx2

)
. (19)

The goal of the adversarial learning task is to improve the
robustness of neural networks against adversarial examples.

We will illustrate the performance via both artificial data

and real data. Artificial data is generated to examine a
one-dimensional adversarial training problem where the
constraints are subject to local bounds. Also, we consider
two real datasets. One is MNIST [71], containing 784 features.
The other is used for identifying cats from h5py library
[72], containing 12288 features. We consider the binary
classification problem and divide the labels of MNIST into
zero and non-zero and the other into cat and non-cat. Then,
we standardize the data using min-max normalization. Also,
we will compare the performance of Algorithm 1 in this task
with some state-of-the-art algorithms [17], [18], [52].

Method. We obtain the complementary function in (17) and
employ Algorithm 1 to solve this problem. Based on (9), we
can derive

E +=Θ∗∩{σ1 :
λ1 − κx

ωl1
In≥σ1,l ≥

κx − λ2

ωl2
In, l=1, · · · , q},

where ωl1 and ωl2 are the largest and the smallest eigenvalues
of Al, respectively. Set tolerance ttol = 10−3 and the terminal
criterion ∥xk+1 − xk∥ ≤ ttol.

Experiment results. We first consider a one-dimensional
adversarial training problem by using synthetic data, where
the action set Ω1 = {x1 ∈ R : xmin ≤ x1 ≤ xmax}
is endowed with a unit square form, while set Ω2 =
{x2 ∈ R : ∥x2∥2 ≤ r} is endowed with a Euclidean
sphere form. Assign αk = 2

k+1 as the step size. Take ϕ1 =
(x1−xmin) log(x1−xmin) +(xmax−x1) log(xmax−x1), ϕ2 =
−
√
r2− ∥x∥22, φ1 = 1

2∥σ1∥2 and φ2 = 1
2∥σ2∥2. The plot

Γ1(x1, σ1, x2) =
1

q

q∑
l=1

σ1,l(−a1x
T
1 Alx1 − 2a1x

T
1 Alx2 − a1x

T
2 Alx2 − a2β

T
1 x1 − a2β

T
1 x2)− σ1,l log(

σ1,l

1− σ1,l
)− log(1− σ1,l)

+ (1− β2)(a1x
T
1 Alx1 + 2a1x

T
1 Alx2 + a1x

T
2 Alx2 + a2β

T
1 x1 + a2β

T
1,lx2) +

λ1

2
∥x1∥2 −

λ2

2
∥x2∥2. (17)
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(a) ϵ = 0.2 with FGSM (b) ϵ = 0.3 with FGSM (c) ϵ = 0.4 with FGSM

(d) ϵ = 0.2 with PGD (e) ϵ = 0.3 with PGD (f) ϵ = 0.4 with PGD

Fig. 3. Trajectories of Loss under MNIST dataset with different learning rates.

(a) ϵ = 0.2 with FGSM (b) ϵ = 0.3 with FGSM (c) ϵ = 0.4 with FGSM

(d) ϵ = 0.2 with PGD (e) ϵ = 0.3 with PGD (f) ϵ = 0.4 with PGD

Fig. 4. Trajectories of Loss under the dataset for identifying cats with different learning rates.

of two players’ payoffs is shown in Fig. 2. It can be seen
that this non-convex game setting has a Nash stationary
point and a global NE. Here we show x† = [−1.69, 1.90]
as the Nash stationary point, while x♢ = [1.63, 0.86] as
the global NE. We compare Algorithm 1 with several well-
known methods based on stationary information, such as the
classic gradient descent (GD), the optimistic mirror descent
(OMD) [41], and the extra-gradient method (EG) [73]. We
randomly initialize these methods and the results are shown
in Fig. 2 (a)-(f). Interestingly, the initialization has little impact
on the convergence of our algorithm. However, it changes

drastically the convergence property of other methods. The
evolution results of x(t) with initial value x0 = [2,−2.5] and
x0 = [3.5, 4.25] are shown in Fig. 2 (a) and (b), respectively,
where all methods find the global NE. With initial value
x0 = [−4,−4] and x0 = [0,−3] in Fig. 2 (c) and (d), only
Algorithm 1 still achieves the target, while other methods
are stuck into a Nash stationary point instead. Moreover, the
evolution of x(t) with x0 = [−1.5, 3.5] and x0 = [−4,−0.5]
can be found in Fig. 2 (e) and (f). In this condition, though
these initial values are close to the Nash stationary point x†,
Algorithm 1 still works well and converges to the global NE.
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TABLE 2
Test accuracy under attacks with different learning rates and perturbations.

Learning rate FGSM PGD
ϵ = 0.2 ϵ = 0.3 ϵ = 0.4 ϵ = 0.2 ϵ = 0.3 ϵ = 0.4

[52]
0.05 92.51% 93.84% 94.72% 93.61% 92.47% 92.29%
0.1 93.96% 92.21% 92.05% 94.11% 93.59% 93.20%
0.15 93.18% 93.06% 92.58% 92.44% 92.31% 91.65%

[18]
0.05 90.88% 93.95% 92.48% 89.33% 91.75% 92.46%
0.1 92.75% 92.33% 94.56% 92.25% 92.34% 93.87%
0.15 96.24% 95.71% 94.05% 96.21% 95.15% 94.37%

[17]
0.05 96.21% 96.03% 95.88% 95.34% 94.71% 93.49%
0.1 97.04% 96.66% 96.23% 96.00% 95.17% 94.22%
0.15 96.79% 97.51% 96.82% 95.69% 95.50% 94.07%

Alg. 1 (ours)
0.05 98.01% 97.66% 94.15% 97.12% 96.06% 93.81%
0.1 98.52% 98.71% 96.22% 98.43% 97.12% 94.51%
0.15 97.54% 96.33% 97.18% 97.05% 96.89% 94.24%

Fig. 2 clearly shows that Algorithm 1 is an effective algorithm
to seek the global NE regardless of the initial point, while
other methods are susceptible to varied initial points.

Next, we examine Algorithm 1 on two real datasets: the
MNIST dataset and the dataset for identifying cats. Consider
two popular adversarial attacks: Fast Gradient Sign Method
(FGSM) [74] and Projected Gradient Descent (PGD) [75]. In
this view, we take different perturbations ϵ = 0.2, 0.3, 0.4
on the original picture β0, and show the trajectory with
different learning rates αk = 0.05, 0.1, 0.15. Specifically, Figs.
3 and 4 correspond to the MNIST dataset and the dataset
for identifying cats, respectively. In both Figs. 3 and 4, we
observe that as the number of iterations increases, the value
of Loss decreases gradually, whose trend is dependent on
different learning rates. Eventually, they all perform well and
the Loss tends to zero.

Moreover, based on the above settings, we compare
Algorithm 1 with some state-of-the-art algorithms in robust
neural network learning tasks [17], [18], [52]. Here, we
focus on the MNIST dataset and consider perturbations
ϵ = 0.2, 0.3, 0.4 on the original dataset β0. Table 2 shows
the test accuracy of Algorithm 1 against two adversarial
attacks FGSM and PGD, compared with other developed
methods. The result indicates that our approach is effective
under given perturbations, yielding a higher test accuracy
than compared methods.

7.2 Sensor network localization
In this part, we apply our approach to solving a sensor
network localization (SNL) problem.
Model and data pre-processing. We consider a class of non-
convex games in SNL with N non-anchor sensor nodes
and M anchor nodes [15], [51], [76]. The anchor nodes’
positions are known while the non-anchor nodes’ positions
are unknown. For i ∈ I , the position strategy set Ωi is a unit
square Ωi = {xi ∈ R2 : xmin ≤ xil ≤ xmax} for l = 1, 2. The
payoff function is defined as

Ji(xi,x−i) (20)

=
∑
j∈N i

s

(∥xi−xj∥2− d2ij)
2+

∑
k∈N i

a

(∥xi−ak∥2−e2ik)
2+

κx

2
∥xi∥2.

The first term in (20) is the same as (3), which measures
the localization accuracy between non-anchor node i and its
neighbor non-anchor node j ∈ N i

s . The second term in (20)
is another localization measurement between non-anchor
node i and its neighbor anchor node k ∈ N i

a. The last term
serves as a regularizer. The goal is to estimate the position of
all non-anchor sensor nodes as accurately as possible. Each
non-anchor node i needs to satisfy ∥x♢

i −x♢
j ∥2−d2ij = 0 and

∥x♢
i − ak∥2 − e2ik = 0 for any j ∈ N i

s and k ∈ N i
a.

Analogously, we will conduct experiments on SNL prob-
lems using both artificial data and real data. Artificial data
is generated to simulate scenarios with non-anchor nodes,
intuitively demonstrating the convergence and effectiveness
of the proposed algorithms. Then, we take two real datasets,
the UJIIndoorLoc dataset and the hybrid indoor positioning
dataset. The UJIIndoorLoc dataset was introduced in 2014
at the International Conference on Indoor Positioning and
Indoor Navigation, which estimates user location based on
building and floor. The hybrid indoor positioning dataset
was created for the comparison and evaluation of positioning
methods. Both datasets are available on the UC Irvine
Machine Learning Repository website [77]. We extract the
latitude and longitude coordinates of part of the sensors and
standardize the data by doing min-max normalization.
Method. We reformulate this problem with a potential game
model, where the potential function is

Ψ(Λ(xi,x−i)) =
1

2

N∑
i=1

∑
j∈N i

s

(∥xi − xj∥2 − dij)
2

+
1

2

N∑
i=1

∑
k∈N i

a

(∥xi − ak∥2−e2ik)
2+

N∑
i=1

κx

2
∥xi∥2.

Then, we make a canonical transformation along the pro-
cedure in this paper to handle non-convexity. According to
(9),

E + = Θ∗ ∩ {σ : P (σ) + κxINn ⪰ κxINn}, (21)

which is a polyhedron here due to a common σ after
canonical transformation. Moreover, it is worth noting
that the global NE x♢ represents the localization accuracy
for all sensors. Deduced from the dual relation σ♢ =
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TABLE 3
MLE of five methods with three initialization and three iterations.

Initialization Iteration
Values of MLE

Alg. 1 (ours) proximal [45] PGD [24] penalty [25] SGD [68]

x0
11 = 3

5 1.2631 1.5589 1.0819 1.9259 1.6590

50 0.3009 0.1460 0.1174 0.1625 0.2513

200 0.0021 0.0343 0.0481 0.0567 0.0529

x0
11 = −3

5 9.4408 10.0225 9.9922 9.9855 9.9925

50 3.3574 4.8478 8.8478 7.5678 7.9568

200 0.0379 3.8488 7.2688 6.5929 6.3470

x0
11 = −0.1

5 5.5911 7.0914 6.8472 7.0160 5.6742

50 0.5977 6.6912 6.0461 5.1330 5.8409

200 0.0028 5.4908 5.1005 4.4875 6.1451

0 50 100 150 200

iteration k

4

4.8
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global NE
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(a) x11(0) = 3

0 50 100 150 200

iteration k

-5
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(b) x11(0) = −3 (c) x11(0) = −0.1

Fig. 5. Comparison of convergence results with different initial points. Alg. 1 is ours.

∇Ψ(ξ) |ξ=Λ(x♢
i ,x♢

−i)
,

σs
ij = 2(∥x♢

i − x♢
j ∥2 − d2ij) = 0,∀(i, j) ∈ Ess,

σa
ik = 2(∥x♢

i − ak∥2 − e2ik) = 0,∀(i, k) ∈ Eas,

where σ = col{col{σs
ij}(i,j)∈Ess

, col{σa
ik}(i,k)∈Eas

}, Ess is the
set of edges between non-anchor nodes and Eas is the set of
edges between anchor nodes and non-anchor nodes. These
indicate that dual variable σ♢ corresponding to the global
NE x♢ is subject to σ♢ = 0q where q = |Ess| + |Eas|. As
0q ∈ E +, we can replace E + in (21) with a simple unit
square constraint E + = [0, D]q in the practical implemen-
tation, where D is a positive constant used to reduce the
computational complexity.

On this basis, we employ Algorithm 1 to solve this prob-
lem. Assign αk = O(1/

√
k) as the step size. Take ϕi(xi) =

2∑
l=1

(xi,l−xmin) log(xi,l−xmin) +(xmax−xi,l) log(xmax−xi,l)

and φ(σ) = 1
2∥σ∥

2
2. We will evaluate the performance by the

mean localization error

MLE =
1

N

√√√√ N∑
i=1

∥xi − x♢
i ∥2.

Set tolerance ttol = 10−3 and the terminal criterion ∥xk+1 −
xk∥ ≤ ttol and ∥σk+1 − σk∥ ≤ ttol.

To further illustrate this task, we will compare Algorithm
1 with several developed methods for multi-player models,

including projected gradient descent (PGD) [24], penalty-
based methods [25], stochastic gradient descent (SGD) [68],
and gradient-proximal methods [45].
Experiment results We first consider a situation with artificial
data where there are N = 10 non-anchor nodes and no
anchor nodes. The distance parameters dij are randomly
chosen from a compact region [5, 10]. We randomly generate
three different initial points and record the value of MLE
under 5, 50, and 200 iterations to measure the accuracy
of the computed locations. We compare Algorithm 1 with
several mentioned methods and list the results in Table 3.
In the first case x0

11 = 3, all methods locate the non-anchor
nodes accurately, and the value of MLE decreases with the
increase of iterations because the initial is near the global NE.
Nevertheless, with two other initial conditions x0

11 = −3 and
x0
11 = −0.1, the advantage of Algorithm 1 is outstanding, as

shown in Table 3. Only Algorithm 1 maintains MLE within a
tolerance error range, while other methods can not guarantee
this. This is because Algorithm 1 is insusceptible to the initial
point’s location. In Fig. 5 (a)-(c), we further check these three
cases in view of a fixed player’s decision. It tells that only
our algorithm achieves the target and finds the global NE,
while others fail with varied initial points.

Next, via the two real datasets: the UJIIndoorLoc dataset
and the hybrid indoor positioning dataset [77], we focus
on the effectiveness of Algorithm 1 when the size of sensor
networks expands. On the one hand, take different sensor
numbers N = 15, 25, 35, 50, 70, 100 within the UJIIndoorLoc
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(a) N = 15 (b) N = 25 (c) N = 35

(d) N = 50 (e) N = 70 (f) N = 100

Fig. 6. Performance of computed sensor location results with different network sizes.

TABLE 4
MLE of different methods with different sensor network sizes.

Node numbers N = 20 N = 30 N = 70 N = 100

Alg. 1 (ours) 0.0021 0.0008 0.0003 0.0002

SGD 2.3396 2.2322 0.0811 0.3281

PGD 2.2700 2.2052 0.1891 0.2419

penalty 2.2696 2.7456 0.0817 0.3294

proximal 3.2578 2.3697 0.6794 0.4881

dataset and Fig. 6 shows the computed sensor location results
in these cases. We can see that the good performance of
Algorithm 1 is not influenced by network sizes. On the
other hand, we compare Algorithm 1 with the developed
algorithms under different sizes within the hybrid indoor
positioning dataset. Fig. 7 shows the computed results from
different methods for the case N = 20, which indicates
that Algorithm 1 localizes all non-anchor nodes, while other
methods exhibit some deviations from the true locations.
Furthermore, we take N = 20, 30, 70, 100, and Table 4 lists
the value of MLE in each case. It reflects that Algorithm
1 achieves a higher localization accuracy than the baseline
methods. As the network size expands, only Algorithm 1
still maintains MLE in a tolerance range, while others cannot
guarantee this.

8 DISCUSSIONS

At last, we give some discussions on the obtained results in
this paper, based on the comparisons with related works.

Firstly, we innovatively derived the existence condition
of global NE in such a significant class of non-convex multi-
player games. This game setting has broad applications in

robust training [18], sensor localization [51], and mechanism
design [20], [78]. Nevertheless, the obtained results cannot
be achieved by other current approaches to non-convex
game settings so far. With the rapid development and wide
applications of adversarial systems and models in machine
learning, non-convex games are playing a more and more
important role in learning tasks. As we know, there have
been some theoretical studies and algorithm designs for non-
convex games, but most of these studies have focused on
the two-player min-max problems. According to categories
of players’ objectives, the research status can be roughly
divided into Polyak-Łojasiewicz cases [17], [26], strongly-
concave cases [27], [28], and general non-convex non-concave
cases [38], [39]. Such popularity is attributed to the success of
GAN and its variants [40], [41]. Recently, learning methods
in artificial intelligence have been developed for multi-
agent systems, distributed design, federated learning, or
cooperative estimation [78], [79], [80], [81]. This means that
adversarial training is gradually generalized to multiple
agents, no longer restricted to two opponents. There have
been initial efforts for non-convex multi-player settings. For
example, [42], [43] proposed a best-response scheme for
local NE seeking, while [45] designed a gradient-proximal
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(a) Alg.1 (b) SGD (c) PGD

(d) penalty (e) proximal

Fig. 7. Computed sensor location results with different methods

algorithm to find an approximate solution. As mentioned in
these works, finding local NE or alternative approximations
is challenging but acceptable. Up till now, revealing the
existence of the global optimum or equilibrium in non-
convex settings is still an open problem [21], [22]. In this view,
it is important to investigate the existence condition of global
NE in this paper. We employed conjugate transformation of
duality theory and the continuous mapping of variational
inequality to derive this in Theorem 1.

Secondly, we designed a continuous ODE to compute
the global NE and deduced its discrete algorithm with its
step-size designs and convergence rates in two typical cases.
Recall the existing game-theoretical algorithms for multiple
players based on the first-order information [23], [24], [25].
Most of these works depend on convexity assumptions,
namely, strongly or strictly convex payoffs of each player
or directly monotone pseudo-gradients, which are core to
finding NE in game models. However, total convexity is a
luxury in reality. Inevitably, the above approaches for convex
game models perform unsatisfactorily when confronting
non-convex settings, since their terminus merely lies in
local NE or some approximations. Therefore, considering
so important a class of non-convex in this paper, we are
accountable for designing novel algorithms to approach
the global NE. We realized the goal through the design
of continuous conjugate-based ODE. This breaks the limits
of traditional convexity assumptions in the study of multi-
player game models. By using Lyapunov stability theory
in nonlinear systems, we obtained the convergence of the
designed dynamics in Theorem 2 and the exponential rate
in Theorem 3, which demonstrate a strong convergence
performance for continuous ODE. In addition, the induced
discrete scheme also reached good convergence results in
Theorem 4 and Theorem 5, respectively, for generalized

monotone cases and potential cases.
Lastly, we give further discussions on the duality theory

and associated techniques in this paper. Indeed, the appli-
cations of duality theory in machine learning are not rare
[56], and the canonical duality theory utilized in this paper
has also been studied before in optimization problems [14],
[49]. Unfortunately, it is not straightforward to transplant
this technique from optimization to game models. This is
because players’ decisions are coupled. When players make
decisions, they also need to take into account the changes in
other players’ decision variables. This phenomenon yields
that we should handle all players’ decision variables as
a unified profile. Therefore, we transformed the original
problem into a complementary one by means of duality
theory and assigned a sufficient feasible set for the dual
variables. We finally overcame the above bottleneck by
virtue of variational inequalities, and obtained the existence
condition of the global NE. Besides, the convergence proof
of the proposed algorithms to seek the global NE differs
from those of optimization. Unlike optimization, where
there is a uniform objective function for all variables, multi-
player game models require new measures to analyze the
convergence of realization algorithms. To this end, we
utilized the Bregman divergence and some inequalities
to overcome obstacles, including the three-point identity,
Fenchel’s inequality, and Jensen’s inequality. Adopting these
techniques in the theoretical analysis may provide a new path
in the future study of large-scale multi-player interactions
and interference.

9 CONCLUSIONS AND FUTURE WORK

We considered a typical class of non-convex multi-player
games and discussed how to approach the global NE. By
virtue of canonical duality theory and VI problems, we
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proposed a conjugate-based ODE for the solution of a
transformed VI problem. Thus, we can derive the global
NE of the original non-convex game if the duality relation
can be verified. After providing theoretical guarantees of the
ODE convergence, we conducted discretization and analyzed
step-size settings for the corresponding convergence rates
under two typical non-convex conditions.

Our exploration continues to advance. Regarding con-
vergence rates, combining proper accelerated methods may
yield promising results; In terms of the multi-player back-
ground, players’ interaction may rely on a communication
network in consideration of privacy and security, which
may suggest the necessity for a distributed or decentralized
protocol.
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Supplementary Materials
In the Supplementary Materials, we provide several detailed sections that were omitted from the main text. The necessary
preliminaries include canonical duality theory, variational inequalities, Bregman divergence, and several significant
inequalities. Also, we provide detailed proofs for all lemmas and theorems.

S.1 CANONICAL DUALITY THEORY

We begin the supplementary section of this paper with the following fundamental concepts of canonical duality theory. A
differentiable function Ψ : Θ → R is said to be a canonical function if its derivative ∇Ψ : Θ → Θ∗ is a one-to-one mapping.
Besides, if Ψ is a convex canonical function, its conjugate function Ψ∗ : Θ∗ → R can be uniquely defined by the Legendre
transformation, that is,

Ψ∗ (σ) =
{
ξTσ −Ψ(ξ) | σ = ∇Ψ(ξ)

}
,

where σ ∈ Θ∗ is a canonical dual variable. On this basis, there are corresponding canonical duality relations holding on
Θ×Θ∗:

σ = ∇Ψ(ξ),

⇔ ξ = ∇Ψ∗ (σ) ,

⇔ ξTσ = Ψ(ξ) + Ψ∗ (σ) .

Here, (ξ, σ) is called the Legendre canonical duality pair on Θ×Θ∗.

S.2 PROOF OF LEMMA 1

In this section, we give the proof of Lemma 1, which investigates the relationship of stationary points between (8) and (1).
Here we reclaim Lemma 1 for convenience.
Lemma 1 For a profile x♢, if there exists σ♢ ∈ Θ∗ such that for i ∈ I , (x♢

i , σ
♢
i ) is a stationary point of complementarity

function Γi(xi, σi,x
♢
−i), then x♢ is a Nash stationary point of game (1).

Proof. For a given strategy profile x♢, if there exists σ♢ ∈ Θ∗ such that for all i ∈ I , (x♢
i , σ

♢
i ) is a stationary point of

complementarity function Γi(xi, σi,x
♢
−i), then it satisfies the following first-order conditions:

0n ∈ σ♢T
i ∇xi

Λi(x
♢
i ,x

♢
−i) +NΩi

(x♢
i ), (s.1a)

0qi ∈ −Λi(x
♢
i ,x

♢
−i) +∇Ψ∗

i (σ
♢
i ) +NΘ∗

i
(σ♢

i ), (s.1b)

where NΩi(x
♢
i ) is the normal cone at point x♢

i on set Ωi, with a similar definition for the normal cone NΘ∗
i
(σ♢

i ). Following
the definition of the convex canonical function Ψi, we can learn that its derivative ∇Ψi : Θi → Θ∗

i is a one-to-one mapping
from Θi to its range Θ∗

i . Thus, for given ξ♢i ∈ Θi with ξ♢i = Λi(x
♢
i ,x

♢
−i), there exists a unique σ♢

i ∈ Θ∗
i such that

σ♢
i = ∇Ψi(ξ

♢
i ).

Meanwhile, given this Legendre canonical duality pair (ξ♢i , σ
♢
i ) on Θi ×Θ∗

i , the duality relation holds that

σ♢
i = ∇Ψi(ξ

♢
i ) ⇐⇒ ξ♢i = ∇Ψ∗

i (σ
♢
i ).

With all this in mind, (s.1b) can be transformed into

Λi(x
♢
i ,x

♢
−i) = ∇Ψ∗

i (σ
♢
i ). (s.2)

Using the duality relation again, (s.2) is equivalent to

σ♢
i = ∇Ψi(Λi(x

♢
i ,x

♢
−i)). (s.3)

By substituting (s.3) into (s.1a), we have

0n ∈ ∇Ψi(Λi(x
♢
i ,x

♢
−i))

T∇xiΛi(x
♢
i ,x

♢
−i) +NΩi

(x♢
i ). (s.4)

According to the chain rule,
∇Ψi(Λi(x

♢
i ,x

♢
−i))

T∇xi
Λi(x

♢
i ,x

♢
−i) = ∇xi

Ji(x
♢
i ,x

♢
−i).

Therefore, (s.4) is equivalent to
0n ∈ ∇xi

Ji(x
♢
i ,x

♢
−i) +NΩi

(x♢
i ). (s.5)

Since (s.5) is true for any player i ∈ I , the profile x♢ satisfies the Nash stationary condition, which completes the proof. □
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S.3 VARIATIONAL INEQUALITY

In this section, we introduce some concepts and properties related to the variational inequality (VI). Recall the following
notations according to problem (8)

z = col{x,σ}, Ξ = Ω× E + ⊂ RnN+q.

For the conjugate gradient of canonical function Ψi for i ∈ I , denote

∇Ψ∗ (σ) = col{∇Ψ∗
i (σi)}Ni=1.

Also, denote the profile of all Λi by
Λ (x) = col {Λi (xi,x−i)}Ni=1 ,

and the augmented partial derivative profile as follows

G(x,σ) = col
{
σT
i ∇xi

Λi (xi,x−i)
}N

i=1
.

In this way, the pseudo-gradient of (8) can be rewritten as

F (z) ≜

[
G(x,σ)

−Λ (x) +∇Ψ∗ (σ)

]
=

[
col{

∑qi
k=1[σi]k∇xiΛi,k(xi,x−i)}Ni=1

col {−Λi (xi,x−i) +∇Ψ∗
i (σi)}Ni=1

]
. (s.6)

To proceed, the corresponding variational inequality (VI) problem VI(Ξ, F ) is defined as

Find z ∈ Ξ subject to (z′ − z)TF (z) ≥ 0, ∀z′ ∈ Ξ. (s.7)

The solution to this VI problem is denoted by SOL(Ξ, F ). Moreover, since F (z) is a continuous mapping and Ξ is a closed
set, we have the following result, referring to [30, Page 2-3].

Lemma S1. The solution set SOL(Ξ, F ) of VI(Ξ, F ) in (s.7) is closed. Moreover, any profile z ∈ SOL(Ξ, F ) if and only if

0nN+q ∈ F (z) +NΞ(z).

S.4 PROOF OF THEOREM 1

In this section, we give the proof of Theorem 1 based on the aforementioned preparation regarding the canonical duality
theory and properties in VI problems. For convenience, we reproduce Theorem 1 here.
Theorem 1 There exists x♢ as the global NE of the non-convex multi-player game (1) if (x♢,σ♢) is a solution to VI(Ξ, F )
with σ♢

i = ∇Ψi (ξi) |ξi=Λi(x♢
i ,x♢

−i)
for i ∈ I .

Proof. If there exists σ♢ ∈ E + such that z♢ = col{x♢,σ♢} is a solution to VI(Ξ, F ), then it follows from Lemma S1 that

0nN+q ∈ F (z♢) +NΞ(z
♢). (s.8)

This implies that for i ∈ I ,

0n ∈ σ♢T
i ∇xi

Λi(x
♢
i ,x

♢
−i) +NΩi

(x♢
i ),

0qi ∈ −Λi(x
♢
i ,x

♢
−i) +∇Ψ∗

i (σ
♢
i ) +NE +

i
(σ♢

i ),

or equivalently described as
(σ♢T

i ∇xiΛi(x
♢
i ,x

♢
−i))

T (xi − x♢
i ) ≥ 0, ∀xi ∈ Ωi,

(−Λi(x
♢
i ,x

♢
−i) +∇Ψ∗

i (σ
♢
i ))

T (σi − σ♢
i ) ≥ 0, ∀σi ∈ E +

i .
(s.9)

Moreover, if σ♢
i = ∇Ψi (ξi) |ξi=Λi(x♢

i ,x♢
−i)

for i ∈ I , then the canonical duality relation hold on Θi × E +
i for i ∈ I . This

indicates that the solution to VI(Ξ, F ) is a stationary point profile of (8) on Θi ×Θ∗
i .

Thus, similar to the chain rules used in Lemma 1, we can further derive that

(∇xi
Ji(x

♢
i ,x

♢
−i))

T (xi − x♢
i ) ≥ 0, ∀xi ∈ Ωi.

Moreover, when σi ∈ E +
i , the Hessian matrix satisfies

∇2
xi
Γi(xi, σi,x−i) =

∑qi

k=1
[σi]k∇2

xi
Λi,k(xi,x−i) ⪰ κxIn,

which indicates the convexity of Γi(xi, σi,x−i) with respect to xi. Besides, due to the convexity of Ψi, its Legendre conjugate
Ψ∗

i is also convex [82]. Therefore, the total complementary function Γi(xi, σi,x−i) is concave in canonical dual variable σi.
In this light, we can establish the global optimality of (x♢,σ♢) on Ω× E +, i.e., for i ∈ I ,

Γi(x
♢
i , σi,x

♢
−i) ≤ Γi(x

♢
i , σ

♢
i ,x

♢
−i) ≤ Γi(xi, σ

♢
i ,x

♢
−i), ∀xi ∈ Ωi, σi ∈ E +

i .
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The inequality relation above indicates that

Ji(x
♢
i ,x

♢
−i) ≤ Ji(xi,x

♢
−i), ∀xi ∈ Ωi, ∀i ∈ I.

This confirms that x♢ is the global NE of (1), which completes the proof. □

S.5 CONVERGENCE ANALYSIS OF THE CONJUGATE-BASED ODE
In this section, we aim to provide proofs for Lemma 2, Theorems 2 and 3. We first introduce some preliminaries that are
necessary for the convergence analysis of ODE (13), which are also widely-accepted concepts in convex analysis. Take
h(z) : Ξ → R as a differentiable ω-strongly convex function on a closed convex set Ξ, which satisfies

h (θz + (1− ω)z′) ≤ θh(z) + (1− θ)h (z′)− ω

2
θ(1− θ) ∥z′ − z∥2 , ∀z, z′ ∈ Ξ, θ ∈ [0, 1].

Additionally, h admits a Lipschitz continuous gradient if there exists a constant L > 0, such that

∥∇h(z′)−∇h(z)∥ ≤ L∥z − z′∥, ∀z, z′ ∈ Ξ,

which is equivalent to

h (z′)− h(z) ≤ (z′ − z)
T ∇h(z) +

L

2
∥z − z′∥2 , ∀z, z′ ∈ Ξ.

On the other hand, according to the duality theory [60], the conjugate function of h defined on the dual space Ξ∗ is given by

h∗(s) = supz∈Ξ

{
zT s− h(z)

}
,

where s ∈ Ξ∗ serves as a dual variable. Additionally, if we consider h as a differentiable and strongly convex function on a
closed convex set Ξ, then according to [31], h∗ is also convex and differentiable on Ξ∗, and satisfies

h∗(s) = minz∈Ξ

{
−zT s+ h(z)

}
.

Moreover, the conjugate gradient ∇h∗(s) who maps Ξ∗ to Ξ satisfies

∇h∗ (s) = argminz∈Ξ

{
−zT s+ h(z)

}
.

With these preliminaries in hand, we can investigate the convergence of the ODE (13). For simplicity, let us denote the
following compact forms associated with the gradients therein

∇ϕ(x) ≜ col {∇ϕi (xi)}Ni=1 , ∇φ(σ) = col{∇φi(σi)}Ni=1;

∇ϕ∗(y) = col{∇ϕ∗
i (yi)}Ni=1, ∇φ∗(ν) = col{∇φ∗

i (νi)}
N
i=1 .

Hence, together with the compact forms G(x,σ), Λ (x), and ∇Ψ∗ (σ) defined in (s.6), ODE (13) can be compactly presented
as 

ẏ = −G(x,σ) +∇ϕ(x)− y,

ν̇ = Λ(x)−∇Ψ∗ (σ) +∇φ(σ)− ν,

x = ∇ϕ∗(y),

σ = ∇φ∗ (ν) .

(s.10)

On this basis, we first show a relationship between the equilibrium in ODE (s.10) (or ODE (13)) and the global NE of game
(1). Rewrite Lemma 2 here for convenience.
Lemma 2 Suppose that (y♢,ν♢,x♢,σ♢) is an equilibrium point of ODE (13). If σ♢

i = ∇Ψi (ξi) |ξi=Λi(x♢
i ,x♢

−i)
for i ∈ I , then

x♢ is the global NE of (1).
Proof. If (y♢,x♢,ν♢,σ♢) is an equilibrium point of ODE (s.10), we have

0nN = −G(x♢,σ♢) +∇ϕ(x♢)− y♢, (s.11a)

0q = Λ
(
x♢)−∇Ψ∗ (σ♢)+∇φ(σ♢)− ν♢, (s.11b)

x♢ = ∇ϕ∗(y♢), (s.11c)

σ♢ = ∇φ∗(ν♢). (s.11d)

It follows from y♢ = −G(x♢,σ♢) +∇ϕ(x♢) that (s.11c) becomes

x♢ = ∇ϕ∗(−G(x♢,σ♢) +∇ϕ(x♢)). (s.12)

For i ∈ I , (s.12) is equivalent to
xi = ∇ϕ∗

i (−σT
i ∇xiΛi (xi,x−i) +∇ϕi(xi)).



21

Moreover, by recalling
∇ϕ∗

i (yi) = argminxi∈Ωi

{
−xT

i yi + ϕi(xi)
}
,

and taking yi as −σT
i ∇xi

Λi (xi,x−i)+∇ϕi(xi), we can obtain the associated first-order condition, expressed in the following
compact form

0nN ∈ G(x♢,σ♢) +NΩ(x
♢). (s.13)

Similarly, it follows from (s.11b) and (s.11d) that

σ♢ = ∇φ∗(Λ
(
x♢)−∇Ψ∗ (σ♢)+∇φ(σ♢)),

which yields
0q ∈ −Λ

(
x♢)+∇Ψ∗ (σ♢)+NE +(σ♢). (s.14)

Thus, by combining (s.13) and (s.14), it follows from Lemma S1 that z♢ = col{x♢,σ♢} is a solution to VI(Ξ, F ). Moreover,
according to Theorem 1, the solution of VI(Ξ, F ) derives a global NE of game (1) if σ♢

i = ∇Ψi (ξi) |ξi=Λi(x♢
i ,x♢

−i)
for i ∈ I ,

which completes the proof. □

Now, we are in a position to prove the convergence of conjugate-based ODE (13). Let us recall Theorem 2 for convenience.

Theorem 2 If E +
i is nonempty for i ∈ I , then ODE (13) is bounded and convergent. Moreover, if the convergent point

(y♢,ν♢,x♢,σ♢) satisfies σ♢
i = ∇Ψi (ξi) |ξi=Λi(x♢

i ,x♢
−i)

for i ∈ I , then x♢ is the global NE of (1).

Proof. (i) We first prove that the trajectory (y(t), x(t), ν(t), σ(t)) is bounded along ODE (13). Construct a Lyapunov
candidate function as

V1 =
N∑
i=1

Dϕ∗
i
(yi, y

♢
i ) +Dφ∗

i
(νi, ν

♢
i ). (s.15)

Here, the Bregman divergences are expressed in detail as follows:

Dϕ∗
i
(yi, y

♢
i ) = ϕ∗

i (yi)− ϕ∗
i (y

♢
i )−∇ϕ∗

i (y
♢
i )

T (yi − y♢i ),

Dφ∗
i
(νi, ν

♢
i ) = φ∗

i (νi)− φ∗
i (ν

♢
i )−∇φ∗

i (ν
♢
i )

T (νi − ν♢
i ).

Consider the term Dϕ∗
i
(yi, y

♢
i ) for i ∈ I . Since xi = ∇ϕ∗

i (yi) and x♢
i = ∇ϕ∗

i

(
y♢i

)
, it follows from the expression of ∇ϕ∗

i in
(11) that

ϕ∗
i (yi) = xT

i yi − ϕi(xi), ϕ∗
i (y

♢
i ) = x♢T

i y♢i − ϕi(x
♢
i ). (s.16)

Thus, by (s.16), we get

Dϕ∗
i
(yi, y

♢
i ) = ϕ∗

i (yi)− ϕ∗
i (y

♢
i )−∇ϕ∗

i (y
♢
i )

T (yi − y♢i )

= ϕi(x
♢
i )− ϕi(xi)− (x♢

i − xi)
T yi

= ϕi(x
♢
i )− ϕi(xi)− (x♢

i − xi)
T∇ϕ(xi) + (x♢

i − xi)
T∇ϕ(xi)− (x♢

i − xi)
T yi.

Since ϕi is µx-strongly convex on Ωi, we can further derive

Dϕ∗
i
(yi, y

♢
i ) ≥

µx

2

∥∥∥xi − x♢
i

∥∥∥2 + (x♢
i − xi)

T (∇ϕ(xi)− yi),

which yields

N∑
i=1

Dϕ∗
i
(yi, y

♢
i ) ≥

µx

2

∥∥x− x♢
∥∥2 + N∑

i=1

(x♢
i − xi)

T (∇ϕi (xi)− yi) . (s.17)

In fact, recall ∇ϕ∗
i (yi) = argminx∈Ωi

{
−xT yi + ϕi(x)

}
. Due to the optimality of ∇ϕ∗

i (yi) and the convexity of ϕi, we have

(∇ϕ∗
i (yi))

T (∇ϕi (∇ϕ∗
i (yi))− yi) ≤ (∇ϕ∗

i (y
♢
i ))

T (∇ϕi (∇ϕ∗
i (yi))− yi) . (s.18)

Furthermore, in consideration of xi = ∇ϕ∗
i (yi) and x♢

i = ∇ϕ∗
i (y

♢
i ) again, (s.18) implies

0 ≤ ∇ϕ∗
i

(
y♢i

)T
(∇ϕi (∇ϕ∗

i (yi))− yi)−∇ϕ∗
i (yi)

T
(∇ϕi (∇ϕ∗

i (yi))− yi)

= (x♢
i − xi)

T (∇ϕi (xi)− yi) .
(s.19)

Thus, (s.17) becomes
N∑
i=1

Dϕ∗
i
(yi, y

♢
i ) ≥

µx

2

∥∥x− x♢
∥∥2 .
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The analogous analysis of the term Dφ∗
i
(νi, ν

♢
i ) in (s.15) can be conducted, revealing that

N∑
i=1

Dφ∗
i
(νi, ν

♢
i ) ≥

µσ

2

∥∥σ − σ♢
∥∥2 + N∑

i=1

(σ♢
i − σi)

T (∇φi (σi)− νi) .

Besides, recalling ∇φ∗
i (νi) = argminσi∈E +

i
{−σT

i νi + φi(σi)}, and leveraging the convexity of φi along with the optimality
of ∇φ∗

i (νi), we deduce
0 ≤ (σ♢

i − σi)
T (∇φi (σi)− νi) . (s.20)

This similarly leads to
N∑
i=1

Dφ∗
i
(νi, ν

♢
i ) ≥

µσ

2

∥∥σ − σ♢
∥∥2 .

As a result, we obtain the lower bound of (s.15) as below

V1 ≥ µ(∥x− x♢∥2 + ∥σ − σ♢∥2) ≥ 0,

where µ = min{µx/2, µσ/2}. This means that V1 is positive semi-definite, and V1 = 0 if and only if x = x♢ and σ = σ♢.
Moreover, V1 is radially unbounded in x(t) and σ(t).

Next, we investigate the derivative of V1 along ODE (13), that is,

d

dt
V1(t) =

d

dt

N∑
i=1

Dϕ∗
i
(yi, y

♢
i ) +Dφ∗

i
(νi, ν

♢
i )

=
d

dt

N∑
i=1

(ϕ∗
i (yi)− ϕ∗

i (y
♢
i )− (yi − y♢i )

T∇ϕ∗
i (y

∗
i )) +

d

dt

N∑
i=1

(φ∗
i (νi)− φ∗

i (ν
♢
i )− (νi − ν♢

i )
T∇φ∗

i (ν
∗
i ))

=
N∑
i=1

(∇ϕ∗
i (yi)−∇ϕ∗

i (y
♢
i ))

T ẏi(t) +
N∑
i=1

(∇φ∗
i (νi)−∇φ∗

i (ν
♢
i ))

T ν̇i(t)

=
N∑
i=1

(xi − x♢
i )

T ẏi(t) +
N∑
i=1

(σi − σ♢
i ))

T ν̇i(t).

Here we employ the compact form defined in (s.10) to provide a more concise statement, leading to the derivation

d

dt
V1(t) = (x− x♢)T (−G(x,σ) +∇ϕ(x)− y) +

(
σ − σ♢)T (Λ (x)−∇Ψ∗ (σ) +∇φ(σ)− ν). (s.21)

Meanwhile, by rearranging the terms in (s.21), we have

V̇1 = −(x− x♢)TG(x,σ)−
(
σ − σ♢)T (−Λ (x) +∇Ψ∗ (σ)) + (x− x♢)T (∇ϕ(x)− y) +

(
σ − σ♢)T (∇φ(σ)− ν)

= −(z − z♢)TF (z) + (x− x♢)T (∇ϕ(x)− y) + (σ − σ♢)T (∇φ(σ)− ν) ,
(s.22)

where z = col{x,σ} and F (z) = col{G(x,σ), −Λ (x)+∇Ψ∗ (σ)} are defined in (s.6). Notice that (s.19) and (s.20) actually
reveals that

(x− x♢)T (∇ϕ(x)− y) ≤ 0, (σ − σ♢)T (∇φ(σ)− ν) ≤ 0. (s.23)

Because z♢ is a solution to VI(Ξ, F ), we realize (
z − z♢)T F (z♢) ≥ 0. (s.24)

Thus, (s.22) yields the further scaling that

V̇1 = −(z − z♢)TF (z) + (x− x♢)T (∇ϕ(x)− y) + (σ − σ♢)T (∇φ(σ)− ν)

≤ −(z − z♢)TF (z)

= −(z − z♢)T (F (z)− F (z♢))− (z − z♢)TF (z♢)

≤ −(z − z♢)T (F (z)− F (z♢)),

(s.25)

where the first inequality is due to (s.23) and the second inequality is due to (s.24). Now, we consider the term (z −
z♢)T (F (z)− F (z♢)) with details.

(z − z♢)T (F (z)− F (z♢))

= (x− x♢)T (G(x,σ)−G(x♢,σ♢)) +
(
σ − σ♢)T (−Λ (x) +∇Ψ∗ (σ)− (−Λ(x♢) +∇Ψ∗(σ♢)))

= (x− x♢)T (G(x,σ)−G(x♢,σ♢))−
(
σ − σ♢)T (Λ(x)− Λ(x♢)) + (σ − σ♢)T (∇Ψ∗(σ)−∇Ψ∗(σ♢)).
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Due to the convexity of Ψi for i ∈ I , the Legendre conjugate Ψ∗
i is also convex [82], which indicates

(σ − σ♢)T (∇Ψ∗(σ)−∇Ψ∗(σ♢)) ≥ 0.

Hence,
(z − z♢)T (F (z)− F (z♢))

≥ (x− x♢)T (G(x,σ)−G(x♢,σ♢))−
(
σ − σ♢)T (Λ(x)− Λ(x♢)).

(s.26)

Expanding the expression in (s.26),

(x− x♢)T (G(x,σ)−G(x♢,σ♢))−
(
σ − σ♢)T (Λ(x)− Λ(x♢))

=
∑N

i=1
(xi − x♢

i )
T
(∑qi

k=1
[σi]k∇xiΛi,k(xi,x−i)−

∑qi

k=1
[σ♢

i ]k∇xiΛi,k(x
♢
i ,x

♢
−i)

)
−

∑N

i=1

∑qi

k=1
([σi]k − [σ♢

i ]k)
(
Λi,k (xi,x−i)− Λi,k(x

♢
i ,x

♢
−i)

)
.

(s.27)

Rearranging (s.27), we have

(x− x♢)T (G(x,σ)−G(x♢,σ♢))−
(
σ − σ♢)T (Λ(x)− Λ(x♢))

=
∑N

i=1

∑qi

k=1

(
[σi]k(xi − x♢

i )
T∇xi

Λi,k(xi,x−i)− [σ♢
i ]k(xi − x♢

i )
T∇xi

Λi,k(x
♢
i ,x

♢
−i)

)
−

∑N

i=1

∑qi

k=1
([σi]k − [σ♢

i ]k)
(
Λi,k (xi,x−i)− Λi,k(x

♢
i ,x

♢
−i)

)
.

(s.28)

By merging terms in (s.28), we have

(x− x♢)T (G(x,σ)−G(x♢,σ♢))−
(
σ − σ♢)T (Λ(x)− Λ(x♢))

=
∑N

i=1

∑qi

k=1

(
(xi − x♢

i )
T ([σi]k∇xi

Λi,k(xi,x−i))+[σi]kΛi,k(x
♢
i ,x

♢
−i)−[σi]kΛi,k(xi,x−i)

)
+
∑N

i=1

∑qi

k=1

(
(x♢

i −xi)
T([σ♢

i ]k∇xi
Λi,k(x

♢
i ,x

♢
−i))+[σ♢

i ]kΛi,k(xi,x−i)−[σ♢
i ]kΛi,k(x

♢
i ,x

♢
−i)

)
.

(s.29)

Recalling the definition in (9) that for i ∈ I ,

σi, σ
♢
i ∈ E +

i = {σi ∈ Θ∗
i :

∑qi

k=1
[σi]k∇2

xi
Λi,k(xi,x−i) ⪰ κxIn}.

Hence, (s.29) satisfies∑N

i=1

∑qi

k=1

(
(xi − x♢

i )
T ([σi]k∇xiΛi,k(xi,x−i))+[σi]kΛi,k(x

♢
i ,x

♢
−i)−[σi]kΛi,k(xi,x−i)

)
+
∑N

i=1

∑qi

k=1

(
(x♢

i −xi)
T([σ♢

i ]k∇xiΛi,k(x
♢
i ,x

♢
−i))+[σ♢

i ]kΛi,k(xi,x−i)−[σ♢
i ]kΛi,k(x

♢
i ,x

♢
−i)

)
≥κx∥x− x♢∥2.

which further yields
(z − z♢)T (F (z)− F (z♢)) ≥ κx∥x− x♢∥2.

In this view, we can accordingly get
V̇1 ≤ −κx∥x− x♢∥2 ≤ 0. (s.30)

Since V1 is radially unbounded in x(t) and σ(t), this implies that the trajectories of x(t) and σ(t) are bounded along the
conjugate-based ODE (13).

Secondly, we show that y(t) and ν(t) are bounded. Take another Lyapunov candidate function as V2 = 1
2∥y∥

2, which is
radially unbounded in y. Along the trajectories of (s.10), the derivative of V2 satisfies

V̇2 ≤ yT (−G(x,σ) +∇Φ(x))− ∥y∥2.

Because x, σ have been proved to be bounded, it is clear that

V̇2 ≤ −∥y∥2 + p1∥y∥ = −2V2 + p1
√
2V2,

where p1 is a positive constant. Analogously, take a third Lyapunov candidate function as V3 = 1
2∥ν∥

2, which is radially
unbounded in σ. Along the trajectories of (s.10), the derivative of V3 satisfies

V̇3 ≤ νT (Λ (x)−∇Ψ∗ (σ) +∇φ(σ)− ν)− ∥ν∥2

≤ −∥ν∥2 + p2∥ν∥ = −2V3 + p2
√
2V3,

with a positive constant p2. Hence, it can be easily verified that V2 and V3 are bounded, so are y(t) and ν(t).
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(ii) Now let us investigate the set

Q ≜

{
(x,y,σ,ν) :

d

dt
V1 = 0

}
,

and take set Iv as its largest invariant subset. It follows from the invariance principle [83, Theorem 2.41] that (x,y,σ,ν) → Iv
as t → ∞, and Iv is a positive invariant set. Then it follows from the derivation in (s.30) that

Iv ⊆
{
(x,y,σ,ν) : x = x♢} .

This indicates that any trajectory along ODE (13) results in the convergence of variable x, that is, x(t) → x♢ as t → ∞.
Moreover, if σ♢

i = ∇Ψi (ξi) |ξi=Λi(x♢
i ,x♢

−i)
for i ∈ I , then the convergent point x♢ indeed represents a global NE. So far, we

have accomplished the proof. □

Based on the proof of Theorem 2, we further show the convergence rate of ODE (13). Here, we also reproduce Theorem 3
below for convenience:

Theorem 3 If E +
i is nonempty and Ψi (·) is 1

κσ
-smooth for i ∈ I , then (13) converges at an exponential rate, i.e.,

∥z(t)− z♢∥ ≤
√

τ

µ
∥z(0)∥ exp(− κ

2τ
t),

where µ = min{µx/2, µσ/2}, κ = min{κσ, κx}, τ = max{Lx/2µx, Lσ/2µσ}.

Proof. Take the same Lyapunov function as in Theorem 2:

V1 =
N∑
i=1

Dϕ∗
i
(yi, y

♢
i ) +Dφ∗

i
(νi, ν

♢
i ).

Recalling the analysis in Theorem 2, we have

V1 ≥ µ
(∥∥x− x♢

∥∥2 + ∥∥σ − σ♢
∥∥2) = µ

∥∥z − z♢
∥∥2 , (s.31)

where µ = min{µx/2, µσ/2}.Based on the standard duality relations, the µx-strong convexity of generating function ϕi on
Ωi implies that its conjugate gradient ∇ϕ∗

i is continuously differentiable on Rn with 1/µx-Lipschitz continuous gradient
[84]. Thus,

N∑
i=1

Dϕ∗
i
(yi, y

♢
i ) =

N∑
i=1

ϕ∗
i (yi)− ϕ∗

i (y
♢
i )−∇ϕ∗

i (y
♢
i )

T (yi − y♢i )

≤ 1

2µx

N∑
i=1

∥yi − y♢i ∥
2.

(s.32)

Moreover, utilizing the duality relation ∇ϕi(xi) = yi and ∇ϕi(x
♢
i ) = y♢i , (s.32) yields

N∑
i=1

Dϕ∗
i
(yi, y

♢
i ) ≤

1

2µx

N∑
i=1

∥yi − y♢i ∥
2

=
1

2µx

N∑
i=1

∥∇ϕi(xi)−∇ϕi(x
♢
i )∥

2

≤ Lx

2µx
∥x− x♢∥2,

(s.33)

where the last inequality is due to the Lx-Lipschitz continuity of generating function ϕi. Analogously, ∇φ∗
i is 1/µσ-Lipschitz

due to the µσ-strongly convexity of generating function φi on E +
i . Given that ∇φi(σi) = νi and ∇φi(σ

♢
i ) = ν♢

i , we can
further observe

N∑
i=1

Dφ∗
i
(νi, ν

♢
i ) =

N∑
i=1

φ∗
i (νi)− φ∗

i (ν
♢
i )−∇φ∗

i (ν
♢
i )

T (νi − ν♢
i )

≤ 1

2µσ

N∑
i=1

∥νi − ν♢
i ∥

2

=
1

2µσ

N∑
i=1

∥∇φi(σi)−∇φi(σ
♢
i )∥

2

≤ Lσ

2µσ
∥σ − σ♢∥2,
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where the last inequality is due to the Lσ-Lipschitz continuity of generating function φi. Therefore,

V1 ≤
N∑
i=1

Dϕ∗
i
(yi, y

♢
i ) +Dφ∗

i
(νi, ν

♢
i ) ≤ τ∥z − z♢∥2,

where τ = max{Lx/2µx, Lσ/2µσ}. Moreover, following the proof of Theorem 2, the derivate of V1 satisfies

V̇1 ≤ −(z − z♢)T (F (z)− F (z♢)).

Due to the definition of set E +
i in (9) and the κσ-strongly convexity of Ψ∗

i for i ∈ I , we have

(z − z♢)T (F (z)− F (z♢))

= (x− x♢)T (G(x,σ)−G(x♢,σ♢)) +
(
σ − σ♢)T (−Λ (x) +∇Ψ∗ (σ)− (−Λ

(
x♢)+∇Ψ∗ (σ♢)))

= (x− x♢)T (G(x,σ)−G(x♢,σ♢))−
(
σ − σ♢)T (Λ (x)− Λ(x♢)) + (σ − σ♢)T (∇Ψ∗(σ)−∇Ψ∗(σ♢))

≥ κx∥x− x♢∥2 + κσ∥σ − σ♢∥2

≥ κ∥z − z♢∥2,

where κ = min{κσ, κx}. Therefore,
V̇1 ≤ −κ∥z − z♢∥2. (s.34)

It follows from (s.31) and (s.34) that

V̇1 ≤ −κ∥z − z♢∥2 ≤ −κ

τ
V1,

which actually yields the exponential convergence rate. In other words,

µ∥z(t)− z♢∥2 ≤ V1(z(t)) ≤ V1(z(0)) exp(−
κ

τ
t) ≤ τ∥z(0)∥2 exp(−κ

τ
t).

Thus, we can also obtain

∥z(t)− z♢∥ ≤
√

τ

µ
∥z(0)∥ exp(− κ

2τ
t),

which implies this conclusion. □

S.6 BREGMAN DIVERGENCE AND SOME INEQUALITIES

After the analysis of ODE (13), this section delves into exploring discrete algorithm 1, which stems from ODE (13). Also, we
present several auxiliary results necessary for subsequent discussions.

First of all, the Bregman divergence associated with a generating function h : Ξ → R is defined as

Dh(z
′, z) = h(z′)− h(z)− (z′ − z)

T ∇h(z), ∀z, z′ ∈ Ξ.

In what follows, we give basic bounds on the Bregman divergence. Firstly, the basic ingredient for these bounds is a
generalization of the (Euclidean) law of cosines, which is known in the literature as the “three-point identity” [85]:
Lemma S2. Let the continuously differentiable generating function h be ω-strongly convex on set Ξ. For z, z′, z+ in Ξ, there

holds
Dh(z

′, z+) +Dh(z
+, z) = Dh(z

′, z) + ⟨z′ − z+,∇h(z)−∇h(z+)⟩. (s.35)

Proof. It follows from the definition of the Bregman divergence that

Dh(z
′, z+) = h(z′)− h

(
z+

)
−

(
z′ − z+

)T ∇h(z+),

Dh(z
+, z) = h(z+)− h(z)−

(
z+ − z

)T ∇h(z),

Dh(z
′, z) = h(z′)− h (z)− (z′ − z)

T ∇h(z).

This lemma holds thus true by adding the first two equalities and subtracting the last one. □
Secondly, with the identity above, we have the following upper bound on a Bregman divergence.

Lemma S3. Let the continuously differentiable generating function h be ω-strongly convex on set Ξ. For z, z′ in Ξ, and
z+ = Πh

Ξ(g) = argminz∈Ξ

{
−zT g + h(z)

}
, the following holds

Dh(z
′, z+) ≤ Dh(z

′, z)−Dh(z
+, z) + (g −∇h(z))T (z+ − z′). (s.36)

Proof. Based on the three-point identity (s.35), we obtain

Dh(z
′, z+) +Dh(z

+, z) = Dh(z
′, z) + (z+ − z′)T (∇h(z+)−∇h(z)).
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Rearranging these terms yields the following equation

Dh(z
′, z+) = Dh(z

′, z)−Dh(z
+, z) + (z+ − z′)T (∇h(z+)−∇h(z)). (s.37)

Moreover, given that z+ = Πh
Ξ(g) = argminz∈Ξ

{
−zT g + h(z)

}
, we can deduce from the optimality of z+ and the convexity

of h that
(−g +∇h(z+))T z+ ≤ (−g +∇h(z+))T z′,

which implies
(z+ − z′)T∇h(z+) ≤ (z+ − z′)T g. (s.38)

Thus, (s.36) holds by plugging (s.38) into (s.37). □
Before the end of this section, we introduce two classic inequalities in the following.

Lemma S4 (Fenchel’s inequality). Take f as a continuous function on set C . Then the Fenchel conjugate f∗ in dual space C∗

is f∗(b) = supa∈C

{
aT b− f(a)

}
, which results in the following inequality

aT b ≤ f(a) + f∗(b).

Lemma S5 (Jessen’s inequality). Take f as a convex function on a convex set U , then

f(
k∑

l=1

γlxl) ≤
k∑

l=1

γlf(xl),

where x1, · · · , xk ∈ U and γ1, · · · , γk > 0 with γ1 + · · ·+ γk = 1.

S.7 PROOF OF THEOREM 4

With the basis mentioned above, we show the convergence analysis of Algorithm 1 on a class of N -player generalized
monotone games. Suppose that ΠΨi

Θi
(·) is κσ-strongly monotone, i.e., there exists a constant κσ > 0 such that (σi −

σ′
i)

T (ΠΨi

Θi
(σi)−ΠΨi

Θi
(σ′

i)) ≥ κσ∥σi − σ′
i∥2,∀σi, σ

′
i ∈ E +

i . Here, we reproduce Theorem 4 below for convenience:
Theorem 4 If E +

i is nonempty and ΠΨi

Θi
(·) is κσ-strongly monotone, then Algorithm 1 converges at a rate of O(1/k) with

step size αk = 2
κ(k+1) , i.e.,

∥xk − x♢∥2 + ∥σk − σ♢∥2 ≤ 1

k + 1

M1

µ2κ2
,

where µ = min{µx

2 , µσ

2 }, κ = min{κσ, κx}, and M1 is a positive constant.
Proof. Take the collection of the Bregman divergence as

∆(z♢, zk+1) ≜
N∑
i=1

Dϕi
(x♢

i , x
k+1
i ) +Dφi

(σ♢
i , σ

k+1
i ), (s.39)

where
Dϕi

(x♢
i , x

k+1
i ) = ϕi(x

♢
i )− ϕi(x

k+1
i )−∇ϕi(x

k+1
i )T (x♢

i − xk+1
i ),

Dφi
(σ♢

i , σ
k+1
i ) = φi(σ

♢
i )− φi(σ

k+1
i )−∇φi(σ

k+1
i )T (σ♢

i − σk+1
i ).

Because ϕi is µx-strongly convex and φi is µσ-strongly convex for i ∈ I , we obtain that

∆(z♢, zk+1) ≥ µx

2

N∑
i=1

∥∥∥xk+1
i − x♢

i

∥∥∥2 + µσ

2

N∑
i=1

∥∥∥σk+1
i − σ♢

i

∥∥∥2
≥ µ∥zk+1 − z♢∥2,

(s.40)

where µ = min{µx/2, µσ/2}. Then, consider the term Dϕi
(x♢

i , x
k+1
i ) in (s.39). By employing three-point identity in Lemma

S2, we obtain

Dϕi
(x♢

i , x
k+1
i ) = Dϕi

(x♢
i , x

k
i )−Dϕi

(xk+1
i , xk

i ) + (∇ϕi(x
k+1
i )−∇ϕi(x

k
i ))

T (xk+1
i − x♢

i ). (s.41)

Denote
gi = ∇ϕi(x

k
i )− αkσ

kT
i ∇xiΛi(x

k
i ,x

k
−i).

According to Algorithm 1,
xk+1
i = Πϕi

Ωi
(gi) = argminx∈Ωi

{
−xT gi + ϕi(x)

}
,
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which implies

0 ≤
(
∇ϕi

(
xk+1
i

)
− gi

)T
x♢
i −

((
∇ϕi

(
xk+1
i

))
− gi

)T
xk+1
i

=
(
∇ϕi

(
xk+1
i

)
− gi

)T
(x♢

i − xk+1
i ).

In addition,

(∇ϕi(x
k+1
i )T (xk+1

i − x♢
i ) ≤ (∇ϕi(x

k
i )− αkσ

kT
i ∇xi

Λi(x
k
i ,x

k
−i))

T (xk+1
i − x♢

i ).

Then (s.41) becomes

Dϕi(x
♢
i , x

k+1
i ) ≤ Dϕi(x

♢
i , x

k
i )−Dϕi(x

k+1
i , xk

i )− αk(σ
kT
i ∇xiΛi(x

k
i ,x

k
−i))

T (xk+1
i − x♢

i ). (s.42)

Similarly, as for the term Dφi
(σ♢

i , σ
k+1
i ) in (s.39), we get

Dφi
(σ♢

i , σ
k+1
i ) ≤ Dφi

(σ♢
i , σ

k
i )−Dφi

(σk+1
i , σk

i )− αk(−Λi

(
xk
i ,x

k
−i

)
+ ξki )

T (σk+1
i − σ♢

i ), (s.43)

where ξki = ΠΨi

Θi
(σk

i ). To proceed, combining (s.42) and (s.43) gives

∆(z♢, zk+1) =
N∑
i=1

Dϕi
(x♢

i , x
k+1
i ) +Dφi

(σ♢
i , σ

k+1
i )

≤
N∑
i=1

Dϕi
(x♢

i , x
k
i )−Dϕi

(xk+1
i , xk

i )− αk(σ
kT
i ∇xi

Λi(x
k
i ,x

k
−i))

T (xk+1
i − x♢

i )

+
N∑
i=1

Dφi
(σ♢

i , σ
k
i )−Dφi

(σk+1
i , σk

i )− αk(−Λi

(
xk
i ,x

k
−i

)
+ ξki )

T (σk+1
i − σ♢

i ),

= ∆(z♢, zk)− αkF (zk)T (zk+1 − z♢)−∆(zk+1, zk).

Hence,
∆(z♢, zk+1) ≤ ∆(z♢, zk)− αkF (zk)T (zk+1 − z♢)−∆(zk+1, zk)

= ∆(z♢, zk)−αkF (zk)T (zk − z♢) + αkF (zk)T (zk − zk+1)−∆(zk+1, zk)

≤ ∆(z♢, zk)−αkF (zk)T (zk − z♢) + αkF (zk)T (zk − zk+1)− µ∥zk − zk+1∥2,

where the last inequality is due to a similar property in (s.40). On this basis, by additionally employing Fenchel’s inequality
and subsituting f in Lemma S4 with 1

2∥ · ∥, we obtain

αkF (zk)T (zk − zk+1) ≤ (2µ)

2
∥zk − zk+1∥2 + (2µ)−1

2
α2
k∥F (zk)T ∥2∗

= µ∥zk − zk+1∥2 + 1

4µ
α2
k∥F (zk)T ∥2∗

= µ∥zk − zk+1∥2 + 1

4µ
α2
k∥F (zk)T ∥2,

where the last equality arises from the conjugate norm of the ℓ2 norm being the ℓ2 norm itself.

Hence, we can make further scaling so that

∆(z♢, zk+1) ≤ ∆(z♢, zk)−αkF (zk)T (zk − z♢) + αkF (zk)T (zk − zk+1)− µ∥zk − zk+1∥2

≤ ∆(z♢, zk)−αkF (zk)T (zk − z♢) + µ∥zk − zk+1∥2 + α2
k

4µ
∥F (zk)T ∥2 − µ∥zk − zk+1∥2

= ∆(z♢, zk)−αkF (zk)T (zk − z♢) +
α2
k

4µ
∥F (zk)∥2

= ∆(z♢, zk)−αk(F (zk)− F (z♢))T (zk − z♢)− αkF (z♢)T (zk − z♢) +
α2
k

4µ
∥F (zk)∥2

≤ ∆(z♢, zk)−αk(F (zk)− F (z♢))T (zk − z♢) +
α2
k

4µ
∥F (zk)∥2,

(s.44)

where the last inequality is true because z♢ is a solution to VI(Ξ, F ). Moreover, with κσ-strongly monotonicity of operator
ΠΨi

Θi
(·), there holds the inequality

(F (zk)− F (z♢))T (zk − z♢) ≥ κ∥zk − z♢∥2,
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where κ = min{κx, κσ}. Then

∆(z♢, zk+1) ≤ ∆(z♢, zk)−αkκ∥zk − z♢∥2 + α2
k

4µ
∥F (zk)∥2.

Denote ηk = καk with η0 = 1. We can verify that

1− ηk+1

η2k+1

≤ 1

η2k
, ∀k ≥ 0.

Then, with the substitute above,

∆(z♢, zk+1) ≤ ∆(z♢, zk)−ηk∥zk − z♢∥2 + η2k
4κ2µ

∥F (zk)∥2. (s.45)

On the one hand, recalling the property of the Bregman divergence [62], [86], we have

∆(z♢, z) ≤ 1

2
∥z − z♢∥2 ≤ ∥z − z♢∥2, ∀z, z♢ ∈ Ξ.

On the other hand, since the stationary points are with finite values, the set E +
i for i ∈ I can be regarded as bounded

without loss of generality. Combined with the compactness of the feasible set Ωi for i ∈ I , there exists a finite constant
M1 > 0 such that ∥F (z)∥2 ≤ M1. Based on this foundation, we derive

∆(z♢, zk+1) ≤ ∆(z♢, zk)−ηk∆(z♢, zk) +
η2k

4κ2µ
∥F (zk)∥2

≤ (1− ηk)∆(z♢, zk) +
η2k

4κ2µ
∥F (zk)∥2

≤ (1− ηk)∆(z♢, zk) +
η2k

4κ2µ
M1.

(s.46)

Multiplying both sides of the relation above by 1/η2k, and recalling the property 1−ηk+1

η2
k+1

≤ 1
η2
k

, we obtain

1

η2k
∆(z♢, zk+1) ≤ 1− ηk

η2k
∆(z♢, zk) +

M1

4κ2µ

≤ 1

η2k−1

∆(z♢, zk) +
M1

4κ2µ
.

Hence, summing up these inequalities over k, · · · , 1 with η0 = 1, that is,

1

η2k
∆(z♢, zk+1) ≤ ∆(z♢, z1) + k

M1

4κ2µ
.

Additionally, by taking k = 1 and η0 = 1 in (s.46), ∆(z♢, z1) ≤ η2
kM1

4κ2µ . Therefore, recalling the step size setting ηk = καk =
2/(k + 1), for all k ≥ 1, we get

∆(z♢, zk+1) ≤ η2k(k + 1)
M1

4κ2µ
=

1

k + 1

M1

µκ2
. (s.47)

Recall
∆(z♢, zk+1) ≥ µ∥zk+1 − z♢∥2 = µ(∥xk − x♢∥2 + ∥σk − σ♢∥2).

Therefore, we are finally rewarded with

∥xk − x♢∥2 + ∥σk − σ♢∥2 ≤ 1

k + 1

M1

µ2κ2
,

which completes the proof. □

S.8 PROOF OF THEOREM 5

As §5, the nonconvex N -player potential game in (15) is endowed with a unified complementary function in (16), that is,

Γ(xi, σ,x−i) = σTΛ (xi,x−i)−Ψ∗ (σ) .

Thus, we can employ the gradient information of this unified complementary function in algorithm iterations, to reduce the
computational cost in Algorithm 1. Accordingly, we can rewrite Algorithm 1 for potential games in the following Algorithm
2.
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Algorithm 2

Input: Step size {αk}, proper generating functions ϕi on Ωi and φ on E +.
Initialize: Set σ0 ∈ E +, x0

i ∈ Ωi, i ∈ {1, . . . , N},
1: for k = 1, 2, · · · do
2: compute the unified conjugate of Ψ: ξk = ΠΨ

Θ(σ
k)

3: update the unified canonical dual variable:
σk+1 = Πφ

E +(∇φ(σk) + αk(Λ
(
xk
i ,x

k
−i

)
− ξk))

4: for i = 1, · · ·N do
5: update the decision variable of player i:

xk+1
i = Πϕi

Ωi
(∇ϕi(x

k
i )− αkσ

kT∇xi
Λ
(
xk
i ,x

k
−i

)
)

6: end for
7: end for

Similarly, define z = col {x, σ}, and the simplified pseudo-gradient of (16) as

F (z) ≜

[
col

{
σT∇xiΛ (xi,x−i)

}N
i=1

−Λ (xi,x−i) +∇Ψ∗ (σ)

]
≜

[
G(x, σ)

−Λ (x) +∇Ψ∗ (σ)

]
.

Consider the weighted averaged iterates in the course of k iterates as

x̂k =

∑k
j=1 αjx

j∑k
j=1 α

j
, σ̂k =

∑k
j=1 αjσ

j∑k
j=1 α

j
.

Then we show the convergence rate of Algorithm 2 (or Algorithm 1 in potential games). We rewrite Theorem 5 below for
convenience:
Theorem 5 If E + is nonempty and players’ payoffs are subject to the potential function in (15), then Algorithm 1 converges
at a rate of O(1/

√
k) with step size αk = 2µd

M2

√
k

, i.e.,

Γ(x̂k, σ♢)− Γ(x♢, σ̂k) ≤ 1√
k

√
d

µ
M2,

where µ = min{µx

2 , µσ

2 }, and d, M2 are two positive constants.
Proof Take another collection of the Bregman divergence as

∆̃(z♢, z) ≜ Dφ(σ
♢, σ) +

N∑
i=1

Dϕi
(x♢

i , xi). (s.48)

Working as in the proof of Theorem 4, we derive the following inequality by three-point identity and Fenchel’s inequality:

∆̃(z♢, zk+1) ≤ ∆̃(z♢, zk)− αkF (zk)T (zk+1 − z♢)− ∆̃(zk+1, zk)

≤ ∆̃(z♢, zk)−αkF (zk)T (zk − z♢) + αkF (zk)T (zk − zk+1)− ∆̃(zk+1, zk)

≤ ∆̃(z♢, zk)−αkF (zk)T (zk − z♢) + αkF (zk)T (zk − zk+1)− µ∥zk − zk+1∥2

≤ ∆̃(z♢, zk)−αkF (zk)T (zk − z♢) + αkF (zk)T (zk − zk+1)− µ∥zk − zk+1∥2

≤ ∆̃(z♢, zk)−αkF (zk)T (zk − z♢) +
α2
k

4µ
∥F (zk)∥2.

(s.49)

Moreover, according to σ ∈ E + in (9),

(x♢ − xk)TG(xk, σk) ≤ σkT (Λ
(
x♢)− Λ

(
xk

)
).

As a result, 〈
F (zk), z♢ − zk

〉
= (x♢ − xk)TG(xk, σk) + (σ♢ − σk)T (−Λ

(
xk

)
+∇Ψ∗

(
σk

)
)

≤ σkTΛ
(
x♢)−Ψ∗

(
σk

)
− (σ♢TΛ

(
xkT

)
−Ψ∗ (σ♢))

= Γ(x♢, σk)− Γ(xk, σ♢).

(s.50)

By substituting (s.50) into (s.49) and rearranging the terms therein, we have

αk(Γ(x
k, σ♢)− Γ(x♢, σk)) ≤ αkF (zk)T (zk − z♢)

≤ ∆̃(z♢, zk)− ∆̃(z♢, zk+1) +
α2
k

4µ
∥F (zk)∥2.
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Meanwhile, as the stationary points have finite values, the set E + can be considered bounded without loss of generality.
Together with the compactness of Ωi for i ∈ I , there exists finite constants d > 0 and M2 > 0 such that ∆̃(z♢, z1) ≤ d and
∥F (z)∥2 ≤ M2. Then, summing up the above inequalities over 1, · · · , k yields

k∑
j=1

αj

(
Γ(xj , σ♢)− Γ(x♢, σj)

)
≤ ∆̃(z♢, z1) +

∑k
j=1 α

2
jM

2
2

4µ
. (s.51)

For more intuitive presentation, we denote the weight by λj =
αj∑k
l=1 αl

. Then (s.51) yields

∆̃(z♢, z1) + (4µ)−1M2
2

∑k
j=1 α

2
j∑k

j=1 αj

≥
k∑

j=1

αj∑k
l=1 αl

(
Γ(xj , σ♢)− Γ(x♢, σj)

)
=

k∑
j=1

λj

(
Γ(xj , σ♢)− Γ(x♢, σj)

)
≥ Γ(

k∑
j=1

λjx
j , σ♢)− Γ(x♢,

k∑
j=1

λjσ
j)

= Γ(x̂k, σ♢)− Γ(x♢, σ̂k),

where the last inequality is true due to Jensen’s inequality. Since the step size satisfies αk = 2
√
µd/M2

√
k, we finally derive

that

Γ(x̂k, σ♢)− Γ(x♢, σ̂k) ≤ 1√
k

√
d

µ
M2,

which indicates the conclusion. □

S.9 THE COMPUTATION OF E +
i

It follows from Theorem 1 that verifying the existence of a global Nash equilibrium (NE) entails computing the feasible set
E +
i of σi. Nonetheless, the derivation and computation of E +

i are not complicated in practical problems. Here we consider
two examples. One is the sensor network localization problem [15], [51], where the structure of E +

i can be obtained as unit
square constraints. The other is the storage control problem [87], [88], where E +

i is defined by linear constraints.
In the sensor network localization problem [15], [51], non-anchor node i selects its localization strategy xi from Ωi ⊆ Rn,

which is represented as a unit square form. The payoff of non-anchor node i is

Ji(xi,x−i) = Ψi(Λi(xi,x−i)) =
∑
j∈N i

s

(∥xi − xj∥2− d2ij)
2 +

κ

2
∥xi∥2,

where Ψi =
∑

j∈N i
s
ΛT
i,jΛi,j and Λi,j = ∥xi − xj∥2 − dij . Denote σi = col{σi,l}

|N i
s |

l=1 ∈ Θ∗
i ⊆ Rqi , where qi = |N i

s |. The
complementary function is

Γi(xi,x−i, σi) =
∑|N i

s |

l=1
(σi,l(∥xi − xl∥2− d2il)

2 −
σ2
i,l

4
) +

κ

2
∥xi∥2.

Then, we have E +
i = Θ∗

i ∩ {σi : Pi(σi) + κxIn ⪰ κxIn}. This implies Pi(σi) ⪰ 0n. Moreover, since the global NE
x♢ represents the localization accuracy for all sensors satisfying ∥x♢

i − x♢
j ∥2 − d2ij = 0 for i, j ∈ Ns [51], we have

σ♢
il = ∇ξilΨi (ξi) |ξi=Λi(x♢

i ,x♢
−i)

= 2(∥x♢
i − x♢

l ∥2 − d2il) = 0. On this basis, since 0qi ∈ E +
i , E +

i can be replaced by some unit
square constraints [0,M ]qi , where M is a constant related to the upper bound of Ωi.

Consider another example in storage control [87], [88]. Storage i selects its charge action xi ∈ Ωi ⊆ Rn to minimize its
electricity cost Ji within a given period n time slots, i.e.,

Ji(xi,x−i) =
n∑

t=1

((
D +

∑N

i=1
xi,t + λx2

i,t

)
+ h

)
·
(
xi,t + λx2

i,t

)
,

where D ∈ R represents the background demand at time t, xi,t + λx2
i,t represents the energy purchased by storage i at

time t, λ ∈ R reflects the degree of quadratic charging loss during charging, and h is the linear coefficient. The admissible
control feasible Ωi is subject to linear constraints Ωi = {xi|Aixi ≤ Ei}, as seen in [87]. We reformulate this problem with a
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potential game model, where the potential function is

H(xi,x−i) =Ψ(Λ(xi,x−i))

=
n∑

t=1

N∑
i=1

(D + h)
(
xi,t + λx2

i,t

)
+

1

2

n∑
t=1

N∑
i=1

(
xi,t + λx2

i,t

)2
+

1

2

n∑
t=1

(
N∑
i=1

xi,t + λx2
i,t)

2,

where Ψ = 1
2Λ

TΛ +
∑n

t=1

∑N
i=1(D + h)

(
xi,t + λx2

i,t

)
and Λ = col

{
col{x1,t + λx2

1,t}nt=1, · · · , col{xN,t +

λx2
N,t}nt=1, col{

∑N
i=1 xi,t + λx2

i,t}nt=1

}
⊆ Rn(N+1). Denote σ ∈ Θ∗ ⊆ Rn(N+1). Based on the canonical transformation,

we have

Γ(x, σ) =σTΛ (x)− 1

2
σ2 +

n∑
t=1

N∑
i=1

(D + h)
(
xi,t + λx2

i,t

)
.

Then, E + = Θ∗ ∩ {σ : P (σ) + 2λ(D + h)InN ⪰ κxInN}, where Θ∗ is a compact set with linear constraints and P (σ) is a
diagonal matrix, i.e.,

P (σ) =

 2λ(σ1 + σnN+1) 0 · · · 0
0 2λ(σ2 + σnN+2) · · · 0
0 0 · · · 2λ(σnN + σn(N+1))

 .

This implies that E + can be transformed into linear constraints.

S.10 DERIVATION OF ROBUST NEURAL NETWORK FORMULATION

The log-sum-exp function introduced in Exam. 2 is

log[1 + exp(−a1x
T
i Axi − 2a1

∑N

j ̸=i,j=1
xT
i Axj − a1

∑N

j ̸=i,j=1
xT
j Axj − a2β

T
1 xi − a2

∑N

j ̸=i,j=1
βT
1 xj)]. (s.52)

Consider a binary classification task in RNN. We begin with the conventional representation of log-sum-exp, and show the
derivation of the new representation (s.52) from it. Take N = 2 for an illustration. The cross-entropy loss function of the
binary classification task is

Loss = −(β2 log(s) + (1− β2) log(1− s))

where s ∈ R is the activation function of the output z = (x1 + x2)
Tβ1. Here, β1 ∈ Rn is an adversarial example of a

clean one β0 ∈ Rn, β2 ∈ R is the label of the clean β0 ∈ Rn, x1 ∈ Ω1 ⊆ Rn is the neural network parameter and x2 is the
adversarial weight perturbation [52], [53].

Take s = σ(z) = 1/(1 + exp(−a1z
2 − a2z)) as a quadratic sigmoid activation function [70] with two parameters a1 > 0

and a2 > 0. Then

Loss =− β2 log(s)− log(1− s) + β2 log(1− s)

=− β2 log(
1

1 + exp(−a1z2 − a2z)
)− log(

exp(−a1z
2 − a2z)

1 + exp(−a1z2 − a2z)
) + β2 log(

exp(−a1z
2 − a2z)

1 + exp(−a1z2 − a2z)
)

=β2 log(1 + exp(−a1z
2 − a2z)) + a1z

2 + a2z + log(1 + exp(−a1z
2 − a2z))− β2(a1z

2 + a2z)

− β2 log(1 + exp(−a1z
2 − a2z))

=(1− β2)(a1z
2 + a2z) + log(1 + exp(−a1z

2 − a2z))

=(1− β2)(a1x
T
1 Alx1 + 2a1x

T
1 Alx2 + a1x

T
2 Alx2 + a2β

T
1 x1 + a2β

T
1 x2)

+ log[1 + exp(−a1x
T
1 Ax1 − 2a1x

T
1 Ax2 − a1x

T
2 Ax2 − a2β

T
1 x1 − a2β

T
1 x2)],

which yields (s.52).
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