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Abstract

Equivariant neural networks encode the intrinsic symmetry of data as an inductive bias,
which has achieved impressive performance in wide domains. However, the understanding
to their expressive power remains premature. Focusing on 2-layer ReLU networks, this paper
investigates the impact of enforcing equivariance constraints on the expressive power. By
examining the boundary hyperplanes and the channel vectors, we constructively demonstrate
that enforcing equivariance constraints could undermine the expressive power. Naturally,
this drawback can be compensated for by enlarging the model size – we further prove upper
bounds on the required enlargement for compensation. Surprisingly, we show that the
enlarged neural architectures have reduced hypothesis space dimensionality, implying even
better generalizability.

1 Introduction

In scaling up the capacity of machine learning models, leveraging the intrinsic symmetry in data, if it
exists, would be a much more efficient approach than simply scaling up model size; see good examples in
point cloud processing (Qi et al., 2017; Li et al., 2018; Fuchs et al., 2020; Chen et al., 2021), visual tasks
(Cohen & Welling, 2016; Xu et al., 2023), graph neural networks (Veličković et al., 2017; Kanatsoulis &
Ribeiro, 2024), physics and chemistry (Faber et al., 2016; Eismann et al., 2021; Kondor, 2025), reinforcement
learning and decision making (Wang et al., 2022; Qin et al., 2022), amongst others. When learning these
symmetries, classic methods must be shown numerous transformed (sometimes manually) data examples,
such as rotated or translated images, and be enforced to make invariant/equivariant predictions, which is
usually computationally expensive and requires vast amounts of data (Bronstein et al., 2021). Equivariant
neural networks address these challenges through either new architectures or optimization methods to enforce
symmetries (Cohen & Welling, 2016), in which a useful approach is to enforce each layer of the network to
be equivariant.

Despite the impressive performance, it remains unclear whether enforcing equivariance comes at the cost
of reduced expressive power. This paper investigates this trade-off by analyzing whether restricting the
hypothesis space to equivariant models increases the expected risk when approximating an equivariant target
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Figure 1: An equivariant function that satisfies s((a, b)⊤) = s((b, a)⊤) and s((a, b)⊤) = s((−a,−b)⊤). The
left subfigure is a 3D plot, while the right subfigure is a 2D Contour map.

function s(x). Specifically, we examine whether the following inequalities hold:

inf
θ∈Θ

Ex∼P [∥Fθ(x) − s(x)∥2
2] < inf

θ∈Θ∩GENs
Ex∼P [∥Fθ(x) − s(x)∥2

2]

and inf
θ∈Θ∩GENs

Ex∼P [∥Fθ(x) − s(x)∥2
2] < inf

θ∈Θ∩LENs
Ex∼P [∥Fθ(x) − s(x)∥2

2].

Here, Θ is the set of network parameters (usually L matrices) and Fθ is the neural network with parameter
θ. We consider two types of equivariant networks: GENs (General Equivariant Networks), where the global
mapping x → Fθ(x) is required to be equivariant, and LENs (Layer-wise Equivariant Networks), a stricter
subset where equivariance is enforced at every layer of the network. In practice, constructing LENs is a
common approach to achieving GENs (He et al., 2021).

Boundary hyperplanes and channel vectors. We first investigate how these equivariance constraints
(imposed at the level of input-output mapping) fundamentally restrict the architectural structure of neural
networks. For two-layer ReLU networks, we focus on the geometric properties of the boundary hyperplanes
and channel vectors of equivariant networks. We prove that GEN requires boundary hyperplanes to be
symmetric. While for LENs, we demonstrate a constructive property: any LEN can be reformulated into
another LEN that maintains the same model size but possesses a symmetric set of channel vectors. These
geometric rigidities serve as the foundation for our subsequent analysis, enabling us to quantify how much
model size is enough for approximating a target function.

Drawback of enforcing equivariance. Following the insight of the above analysis, we demonstrate a
scenario where equivariance strictly hurts the expressive power. Specifically, we construct an invariant target
function s on R2 and establish two key findings: (1) for two-layer ReLU networks with a single neuron,
general networks (GNs) achieve a strictly lower expected error compared to general equivariant networks
(GENs), and (2) for two-layer ReLU networks that can arbitrarily approximate the target function, layer-wise
equivariant networks (LENs) require a strictly larger model size than GENs.

Compensations via enlarging model size. Inversely, we prove that an increase in model size can fix
the compromised expressive power. When the target function is invariant, and the data distribution is
symmetric, both in terms of group G, enlarging the model size of any equivariant network by |G| times can
compensate for the expected loss over a 2-layer neural network. Moreover, a doubled model size allows LENs
to represent all invariant functions of GENs. We further prove that the constructed LEN with |G| times
enlarged model size surprisingly has a less complex hypothesis space, implying even improved generalizability.
Together with the comparable expressive power, this result renders LENs a competitive solution.
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To the best of our knowledge, this paper provides the first in-depth theoretical examination of the expressive
power of layer-wise equivariant neural networks, demonstrating that enforcing equivariance has drawback
in expressive power. We also show that an appropriately larger model size can compensate for the loss in
expressive power and potentially enhance model generalisability, underlining the advantages of incorporating
layer-wise equivariance into model architectures.

2 Related Works

Enforcing equivariance. Typical approaches for obtaining an equivariant neural network are (1) design-
ing equivariant architectures (Cohen & Welling, 2017; Satorras et al., 2021; Trang et al., 2024) and (2)
introducing equivariance constraints into the optimization (Winter et al., 2022; Tang, 2022; Pertigkiozoglou
et al., 2024).

Equivariant neural architectures. Cohen & Welling (2016); Shin et al. (2016) design group convolu-
tional neural networks in the group spaces as the equivariant variants of the convolutional neural networks,
which is extended to the homogeneous spaces by Cohen et al. (2019). Similar approaches have also been
employed in the design of other popular equivariant networks, such as graph neural networks (Klicpera et al.,
2020; Aykent & Xia, 2025), transformers (Hutchinson et al., 2021; Islam et al., 2025), and diffusion models
(Hoogeboom et al., 2022; Wan et al., 2025).

Symmetry-aware optimization. In this stream, equivariance constraints are introduced in optimization,
as either regularisers or constraints, to ensure the equivariance, usually termed as steerable neural networks
(Cohen & Welling, 2017). Other good examples are about enforcing the symmetry group SN in steerable
graph networks (Maron et al., 2018), the rotation and Euclidean groups {CN , E2} in steerable convolutional
neural networks (Weiler et al., 2018; Weiler & Cesa, 2019), and Lie symmetry in differential equations
(Akhound-Sadegh et al., 2023; Jiang et al., 2025). A major obstacle is the high computational costs to
compute the equivariant basis. Finzi et al. (2021) address this issues with an algorithm with polynomial
computational complexity on the sum of the number of discrete generators and the dimension of the group,
which divides the problem into some independent subproblems and adopts Krylov method to compute
nullspaces.

Theoretical analysis. Theoretical studies have shown that equivariant neural networks have significant
advantages, in terms of generalizability, convergence, and approximation. Sannai et al. (2021) prove im-
proved generalization error bounds of equivariant models. Qin et al. (2022) leverage orbit averaging to
construct a projection mapping from the original hypothesis space to the permutation-equivalent counter-
part, underpinning reduced hypothesis complexity and better generalizability. Lawrence et al. (2022) prove
that linear group convolutional neural networks trained by gradient descent for binary classification converge
to solutions with low-rank Fourier matrix coefficients based on the results via implicit bias. Zaheer et al.
(2017); Maron et al. (2019); Yarotsky (2021); Pacini et al. (2025) prove the universal approximation ability of
equivariant models by various approximation techniques, while Ravanbakhsh (2020) utilize group averaging
to obtain an equivariant approximator to prove the universal approximation ability. In addition, Elesedy &
Zaidi (2021) prove that invariant/equivariant models have a smaller expected loss when the target function
is invariant/equivariant. Azizian & marc lelarge (2021) study the expressive power of invariant/equivariant
graph neural networks.

3 Problem Settings

General networks (GNs). GNs refer to general neural networks without any design for realizing the
equivariance. In this paper, we focus on two-layer networks, with a hidden layer of width m (also the
number of neurons), representing a mapping from Rn → Rd. The network is parameterized by θ, including
the weight matrix W (1) ∈ Rn×m for the hidden layer, and the weight matrix W (2) ∈ Rm×d for an output
layer. With the popular nonlinear activation ReLU σ, the GN maps any input x ∈ Rn to the output:
F (x) = W (2)σ(W (1)x). For the brevity, we denote by α⊤

i the i-th column of W (1), by βj the j-th row of
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W (2) and W (1), and collect these parameters (with m neurons) into a set Θm. In this formulation, the
output of a GN can be formulated as follows:

F (x) = W (2)σ(W (1)x) =
m∑
i=1

βiσ (⟨αi, x⟩) , (1)

where ⟨α, x⟩ is the inner product αTx. We note that the total number of parameters in the GN is nm+md.
As this count is proportional to the hidden layer size m, we use m to characterize the model size.

General equivariant networks (GENs). GENs represent a subset of GNs that constrain the output
function F to be equivalent with respect to a given group representation. A group representation for a
group G is formally defined as a homomorphism ρ : G → GL(m), where GL(m) is the group of all invertible
matrices on Rm×m. A function F is considered equivariant if, for given input and output representations ρ
and ϕ respectively, it adheres to the condition F ◦ ρg = ϕg ◦ F for all group elements g ∈ G. A GN whose
function F satisfies this property is categorised as a GEN. Specifically, when ϕ = id, the function F is called
an invariant function and the networks are called invariant networks. In this paper, we assume that group
G is finite.

Layer-wise equivariant networks (LENs). LENs represent a subset of GNs that constrain each layer
to be equivalent with respect to a given group representation. Specifically, given the group representation ψ
in the hidden layer, LENs require that for all g ∈ G,

ϕg ◦W (2) = W (2) ◦ ψg, ψg ◦ σ = σ ◦ ψg, and ψg ◦W (1) = W (1) ◦ ρg.

As each layer is constrained to be equivariant to maintain the symmetry in the data, the whole network is
equivariant. Specifically, for every group element g ∈ G, we have

F ◦ ρg = W (2) ◦ σ ◦W (1) ◦ ρg = W (2) ◦ σ ◦ ψg ◦W (1),

= W (2) ◦ ψg ◦ σ ◦W (1) = ϕg ◦W (2) ◦ σ ◦W (1) = ϕg ◦ F.

In practice, constructing LENs is a common approach to achieving GENs (He et al., 2021).

Expressive power. The expressive power, of GNs, GENs, and LENs, is defined as the minimum expected
loss for approximating a target function s. Natually, a smaller expected loss means a better expressive
power. Since GENs are in a subset of GNs, and LENs have intuitively more constraints, we have the
following straightforward results: for any target function s, any input distribution P ∈ ∆Rn, and any
number of neurons m,

inf
θ∈Θm∩GNs

Ex∼P [∥Fθ(x) − s(x)∥2
2] ≤ inf

θ∈Θm∩GENs
Ex∼P [∥Fθ(x) − s(x)∥2

2] ≤ inf
θ∈Θm∩LENs

Ex∼P [∥Fθ(x) − s(x)∥2
2],

where θ represents the parameter of a two-layer ReLU network (θ = (W (2),W (1))), and Fθ is the forward
function given parameter θ, and Θm is the parameter set of m-hidden-layer networks. We reuse the notations
GNs (also for GENs and LENs) to denote the respective parameter sets that makes Fθ a GN (also for GEN
and LEN). A study on whether equivariance limits the expressive power of two-layer network is thus to study
whether there exists some equivariant function s and m such that

inf
θ∈Θm∩GNs

Ex∼P [∥Fθ(x) − s(x)∥2
2] < inf

θ∈Θm∩GENs
Ex∼P [∥Fθ(x) − s(x)∥2

2], and

inf
θ∈Θm∩GENs

Ex∼P [∥Fθ(x) − s(x)∥2
2] < inf

θ∈Θm∩LENs
Ex∼P [∥Fθ(x) − s(x)∥2

2].

The first inequality studies whether being equivariant is necessary for being the optimal approximator if the
target function is equivariant. The second is on whether enforcing layer-wise equivariance is the optimal
way to incorporate equivariance. We also note that it is reasonable to assume the target function s to be
equivariant, because equivariant networks are designed for equivariant tasks.
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Figure 2: A visualization of the feature function F of F (x, y) = σ(x) + σ(−y) + σ(−x + y), where the left
subfigure is F1 and the right figure is F2. As shown, there are two boundary hyperplanes: x = 0, y = 0,
y = x.

4 Boundary Hyperplanes and Channel Vectors

To establish a clear foundation for our analysis of expressive power, we discuss two tools, symmetry boundary
hyperplanes and symmetry channel vectors, in this section.

4.1 GENs Imply Symmetric Boundary Hyperplanes

Naturally, ReLU networks are also piece-wise linear, given ReLU functions are piece-wise linear:

F (x) =
m∑
i=1

βiσ (⟨αi, x⟩) =
m∑

i:⟨αi,x⟩≥0

βiα
⊤
i x =

〈
m∑

i:⟨αi,x⟩≥0

αiβ
⊤
i , x

〉
:= ⟨F(x), x⟩ , (2)

where F(x) =
∑m
i:⟨αi,x⟩≥0 αiβ

⊤
i is the feature function of F and is piece-wise constant.

We define the boundary hyperplane as the hyperplane whose feature function values are almost surely
different on its two distinct sides. For simplicity, we assume that all hyperplanes contain 0 and have dimension
n− 1. The formal definition is shown below.
Definition 4.1 (boundary hyperplane). Let F be an output function of a two-layer ReLU network and F(x)
be the corresponding feature function. We call a hyperplane M a boundary hyperplane if and only if for all
x ∈ M and v ̸∈ M :

lim
δ→0+

F(x+ δv) ̸= lim
δ→0+

F(x− δv).

It is not necessary to define the feature function F on the boundary hyperplanes. For any given function
F , we can define it only on the set S = {x : F is linear in B(x, r), ∃r > 0}, where B(x, r) = {x + z :
∥z∥ < r} is the open ball centering at x with radius r. The value of F(x) is determined uniquely by the
Riesz representation theorem. The complementary set Sc is the union of all boundary hyperplanes, whose
intersection with the hyperplanes M ± δv. For all x ∈ S that satisfies ⟨x, αi⟩ ̸= 0 for all i ∈ [m], F(x) must
be

∑
i:⟨x,αi⟩>0 βiα

T
i . Therefore, if the feature function changes when crossing through the same hyperplane,

the active set {i : ⟨x, αi⟩ > 0} must change and the increment of the feature function is
∑
i:⟨αi,x⟩=0 βiα

T
i ,

which is then summarized as Theorem 4.2. This theorem can be viewed as an equivalent definition by the
channel vectors.
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Theorem 4.2. Let F =
∑m
i=1 βiσ(⟨αi, x⟩) be an output function. Then, a hyperplane M is a boundary

hyperplane if and only for all v ̸∈ M :∑
i:⟨αi,v⟩>0,⟨αi,M⟩=0

αiβ
T
i ̸=

∑
i:⟨αi,v⟩<0,⟨αi,M⟩=0

αiβ
T
i ,

where ⟨αi,M⟩ = 0 are defined as ⟨αi, x⟩ = 0 for all x ∈ M . Especially, if M is a boundary hyperplane, there
exists some channel vector α such that ⟨α,M⟩ = 0.

Boundary hyperplane provides a powerful analytical tool for understanding the internal mechanisms of
GENs. We prove that for a GEN, the set of its boundary hyperplanes are symmetric with respect to all
group representations. Specifically, for any given boundary hyperplane M and all fixed group representation
ρ, applying the transformation ρ to the boundary hyperplane (denoted as ρM = {ρx : x ∈ M}) also gets a
boundary hyperplane because

lim
δ→0+

F(ρx+ δρv) = (ρT )−1 lim
δ→0+

F(x+ δv) ̸= (ρT )−1 lim
δ→0+

F(x− δv) = lim
δ→0+

F(ρx− δρv),

where x is a point on the hyperplane M and v is any vector not in M . The inequality holds because the
group representation ρ is always invertible. We note that ρM is not always another hyperplane. In fact, for
the identity e, ρeM = M .

This property hold for all group elements g ∈ G, implying the set of all transformed hyperplanes, {ρgM : g ∈
G}, is a subset of the GEN’s total set of boundary hyperplanes. It also holds for all boundary hyperplanes
M , which means the GEN’s total set of boundary hyperplanes is symmetry under ρ. We summarize this
finding in the following theorem.
Theorem 4.3. For a GEN on group G, its boundary hyperplane set M is closed under group representation
ρg for all G.

This theorem has direct implications for the expressive power of GENs. When approximating a target
function, the network must capture its discontinuous, i.e., boundary hyperplanes. Due to the symmetry
requirement, even a single learned hyperplane M generates a whole family of hyperplanes, {ρgM : g ∈ G}.
The size of this set provides a lower bound on the number of boundary hyperplanes the GEN must use
to approximate the target function effectively. According to Theorem 4.2, a larger number of required
hyperplanes, in turn, necessitates a greater number of neurons in the network.

4.2 LENs further Imply Symmetric Channel Vectors

LENs represent a more constrained subset of GENs, enforcing symmetry at the layer level rather than
across the network as a whole. Although the symmetry property for boundary hyperplane is a fundamental
property of all GENs, the stricter conditions imposed by the LEN structure provide deeper insights. At
least, as mentioned in Section 3, LEN needs one admitted group representation and two weight matrices in
the corresponding intertwining space.

We first consider the property of admitted group representation, i.e., ψ ◦ σ = σ ◦ ψ. This commutation
property is not trivial and places a significant restriction on the form that the group representation ψ can
take. Specifically, for σ = ReLU, the following lemma provides a complete characterization of all such
admitted representations.
Lemma 4.4. For σ = ReLU, a group representation ψ is admitted if and only if for all g ∈ G, ψg is a
generalized permutation matrix with exclusively positive non-zero entries. That is, each row and each column
ψg must contain exactly one non-zero element, and that element must be positive.

Proof. We first prove that each row of ψg has at most one non-zero entry for all g ∈ G. Assume for
contradiction that exists g ∈ G where a row i of ψg has at least two non-zero entries, (ψg)ij and (ψg)ik.
Without loss of generality, we assume (ψg)ij ≤ (ψg)ik. Admitted ψ means that for input vector x = ej − ek,
we have (σ(ψgx))i = (ψgσ(x))i = (ψgej)i = (ψg)ij . However, on the other side we have (σ(ψgx))i =
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σ((ψg)ij − (ψg)ik) = 0, which contradicts our initial assumption that the entries were non-zero. Therefore,
each row of ψg contains at most one non-zero entry.

Each row has exactly one non-zero entry because ψg is invertible, which also means each entry has at least
one non-zero row, making ψg a generalized permutation matrix. Moreover, when (ψg)ij ̸= 0, we can set
x = ej . Then σ(ψgx) = ψgσ(x) implies that σ(ψij) = ψij . From the definition of ReLU, (ψg)ij is positive
for all i.

Lemma 4.4 implies that the action of any ψg on a vector is a composition of a permutation and a positive
scaling of its coordinates. For each g ∈ G, we can identify a unique permutation Pg that maps the coordinate
indices. Specifically, Pg(i) is the index of the only non-zero element in row i of matrix ψg. A special case of
an admitted group representation occurs when all non-zero entries of ψg is 1. In this scenario, each ψg is a
standard permutation matrix. We refer to this ψ as a permuting representation.

Following the property of admitted representation, we now examine how it interacts with the other constraints
of invariant LENs. The final linear layer, represented by W (2) = [β1, · · · , βm], is required to satisfy the
condition W (2) ◦ ψ = W (2) for LENs. This requirement reveals a deeper constraint on ψ and the geometry
of W (2). Specifically, we have the following lemma:

Lemma 4.5. For admitted ψ in an invariant LEN and any connected pair of indices (i, j) (exists g ∈ G
making Pg(i) = j), we have ∥βj∥βi = ∥βi∥βj. Besides, all h ∈ G with Ph(i) = j shares the same positive
(ψh)ij.

Proof. Consider a pair (i, j) that makes ψij ̸= 0 for some g ̸= h. Admitted ψ means that for input ej , we
have βj = W (2)ej = W (2)ψej = ψijW

(2)ei = ψijβi for all ψ, including ψg and ψh. It shows that βi and βj
share the same direction, meaning ∥βj∥βi = ∥βi∥βj . It also shows that ψij does not change if ψ switches
from ψg to ψh, i.e., (ψg)ij = (ψh)ij .

In light of Lemma 4.5, we say βi and βj are in the same orbit if they share the same direction, i.e., ∥βj∥βi =
∥βi∥βj . The lemma demonstrates that the symmetry constraint requires all weight vectors in the same orbit
to lie in the same direction in vector space.

Aside from the constraint on W (2), LENs also impose a condition on W (1) - W (1) should belong to the
intertwiner space defined by ψ and ρ. Combining it with the constraints on ψ and W (2), we provide the
following theorem.

Theorem 4.6. For any ρ-invariant LEN Fθ, there exists an equivalent ρ-invariant LEN, Fθ̃ of the same
size that computes the exact same function (Fθ̃(x) = Fθ(x) for all x), where the channel vectors set of the
rewritten network ({α̃i}) is closed under the action of the transposed group representation ρ⊤. That is, for
any channel vector α̃i and any group element g ∈ G, ρ⊤

g α̃i is also a channel vector of Fθ̃.

The proof is included in Appendix D. The theorem means that we can rewrite any LEN into another LEN
of the same size, where the channel vectors of the rewritten LEN exhibit an explicit symmetry in ρ⊤. In the
view of input-output mapping, the rewritten LEN is equivalent to the given LEN. For the rewritten LEN,
the requirement of symmetry channel vectors means that one single channel vector α̃i implicitly defines a
subset of channel vectors {ρ⊤

g α̃i : g ∈ G}. The network size is then smaller and bounded to accommodate
all these channel vectors.

We note that this constraint is stricter than the one for GENs. A GEN requires the symmetry for bound-
ary hyperplanes while LEN requires that for channel vectors, where one boundary hyperplane has to be
determined by at least one channel vector, but different channel vectors could lead to one hyperplane. For
instance, the channel vectors α and −α are distinct vectors but define the exact same boundary hyperplane.
A GEN has the flexibility to use scaled versions of the same vector normal, whereas a LEN, in its symmetric
form, must treat each parallel vector as a distinct channel vector.
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5 Drawback of Equivariance in Expressive Power

In this section, we show our results on how enforcing equivariance hurts the expressive power. The proofs
are through constructing a target function on R2 → R. When approximating this target function, we show
that for neural networks with one neuron, i.e. in parameter set Θ1, GNs have strictly smaller expected loss
than GENs. For 3-neuron-networks, GNs and GENs can fully approximate this target function, while LENs
cannot.
Example 5.1. Consider group G consists of 4 elements e, g, h, gh where g2 = h2 = e and g · h = h · g = gh.
One group representation ρ is as follows

ρe =
[
1 0
0 1

]
, ρg =

[
0 1
1 0

]
, ρh =

[
−1 0
0 −1

]
, and ρgh =

[
0 −1

−1 0

]
.

Given representation ρ, consider target function s:

s : R2 → R, (a, b)⊤ → max(|a|, |b|, |a− b|),

which is an invariant target function because

s ◦ ρg
(
a
b

)
= s

(
b
a

)
= max(|b|, |a|, |b− a|) = s

(
a
b

)
, and

s ◦ ρh
(
a
b

)
= s

(
−a
−b

)
= max(| − a|, | − b|, |b− a|) = s

(
a
b

)
.

We note that s has another form: s((a, b)⊤) = σ(a) + σ(−b) + σ(b− a).

Figure 1 provides a 3D plot and a 2D contour map to visualize the effects of the imposed symmetry. Figure
2 displays the feature function of the symmetry group element. Building on this example, we demonstrate
how the constraints of GENs can limit expressive power and how this limitation is further pronounced in
LENs. Specifically, we mainly focus on comparisons of GENs vs. GNs on the 1-neuron setting, and LENs
vs GENs on the 3-neuron setting.

One-neuron networks. The output function of the neural network becomes βσ(⟨α, x⟩). A typical one-
neuron network applies the ReLU activation function to each dimension of the input. Formally, when
α = (1, 0)⊤ and β = 1, F ((a, b)⊤) = σ(a) is an approximation and F is a GN with one neuron. Similarly,
when α = (0, 1)⊤ and β = 1, F ((a, b)⊤) = σ(b) is also a GN approximation. Thus, for all input distribution
P with Prx∼P [x⊤ = (0, 0)] < 1, we have

inf
θ∈Θ1∩GNs

Ex∼P [∥Fθ(x) − s(x)∥2
2] ≤ min

[
Ex∼P ∥σ(a) − s(x)∥2,Ex∼P ∥σ(b) − s(x)∥2]

< Ex∼P ∥s(x)∥2. (3)

For GENs, we have f(ρx) = f(x). Combining with the definition of feature function F , we have ⟨F(ρx), ρx⟩ =
⟨ρTF(ρx), x⟩ = ⟨F(x), x⟩, which implies ρT ◦ F ◦ ρ = F for all ρ. Let ρ = ρh, we have for all x:

βσ(⟨α, x⟩) = F(x) = (ρTh ◦ F ◦ ρh)(x) = −βσ(⟨α,−x⟩),

where at least one of σ(⟨α, x⟩) and σ(⟨α,−x⟩) is zero, indicating F = 0 for all x. It shows that the only
one-neuron GEN is zero, which leads to strictly lower expressive power then GNs. Specifically, we have that
for all input distribution P with Prx∼P [x⊤ = (0, 0)] < 1,

inf
θ∈Θ1∩GENs

Ex∼P [∥Fθ(x) − s(x)∥2
2] = Ex∼P ∥s(x)∥2 > inf

θ∈Θ1∩GNs
Ex∼P [∥Fθ(x) − s(x)∥2

2]. (4)

Three-neuron networks. Three-neuron GNs can represent s defined in Example 5.1 because the form
s((a, b)⊤) = σ(a) + σ(−b) + σ(b− a) is already a three-neuron network. Due to the equivariance property of
s, this network is also a GEN. Therefore, three neurons are sufficient for both GNs and GENs to achieve s.
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However, for LENs, we show that three neurons are not enough. According to Theorem 4.6, for any LEN
that represents s, there exists a rewritten LEN with symmetric channel vectors of the same size that also
perfectly represents s. Since s has three boundary hyperplanes: x = 0, y = 0, and x − y = 0, they
should also be the boundary hyperplane of the rewritten LEN, which implies the existence of at least three
channel vectors: c1(1, 0), c2(0, 1), and c3(1, 1) with c1c2c3 ̸= 0. Since the channel vectors are symmetric,
ρ⊤
h c1(1, 0) = −c1(1, 0)also forms a channel vector; as do −c2(0, 1) and −c3(1, 1). As a result, the original

LEN must contain at least six channel vectors, i.e., LENs require at least six neurons to represent s. Finally,
we show that six neurons are sufficient, as the following LEN has exact six neurons and represents s:

Fθ((a, b)⊤) = 1
2 [σ(a) + σ(−a) + σ(b) + σ(−b) + σ(b− a) + σ(a− b)].

6 Compensation to Enforcing Equivariance

In the previous sections, we demonstrated that for a fixed model size, the expressive power of LENs are
strictly lower than that of GENs, which are also strictly less expressive than GNs. A natural question arises:
can this limitation in expressive power be compensated for by enlarging the model size? This section affirms
that enlarging the model size is indeed a viable solution. We will examine this through both realizable
and non-realizable cases. Further, we show that, surprisingly, the enlarged networks can have even reduced
hypothesis complexity, which leads to better generalizability.

6.1 Realizable Case

We first consider the realizable case, where the target function can be perfectly represented by a GN with a
finite number of neurons. By definition, s can also be represented by a finite-neuron GEN. When it comes
to LEN, the conclusion is not straightforward.

Firstly, we show that with a larger model size, there always exists a LEN that can represent any representable
mapping of finite-neuron GENs. To demonstrate this, consider a target GEN-representable function defined
as s(x) =

∑m
i=1 βiσ(⟨αi, x⟩). We can construct a LEN, denoted by F (x), that perfectly replicates s(x). The

weights for this constructed LEN are defined as follows:

W (2) = 1
|G|

[β1, . . . , β1︸ ︷︷ ︸
|G|

, . . . , βm, . . . , βm︸ ︷︷ ︸
|G|

], and

W (1) = [ρTg1
α1, . . . , ρ

T
g|G|

α1, . . . , ρ
T
g1
αm, . . . , ρ

T
g|G|

αm]T .

This construction ensures that the weights adhere to the necessary equivariance conditions. In the first layer,
for all g ∈ G, ρgi

⟨αk, ρgi
(x)⟩ =

〈
ρ⊤
gi
ρ⊤
gi
αk, x

〉
=

〈
ρ⊤
gigj

αk, x
〉

, implying the existence of a permutation ψ

that maps the neuron index corresponding to ρ⊤
gi
αk to the index for ρ⊤

gigj
αk. This ψ is admitted because of

Theorem 4.4. In the second layer, we have that the β is β for all ρ⊤
h αi, indicating its invariance with respect

to ψ.

This constructed LEN is a rewritten version of s because of its invariance and equivariance; specifically,

F (x) =
m∑
i=1

1
|G|

βi
∑
g∈G

σ
(〈
ρ⊤
g αi, x

〉)
= 1

|G|
∑
g∈G

m∑
i=1

βiσ (⟨αi, ρgx⟩)

= 1
|G|

∑
g∈G

s(ρg(x)) = s(x),

which confirms that our constructed LEN perfectly represents the target function s. This result can be
extended to handle any equivariant functions and multi-layer architectures, as detailed in Appendix E.
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Building on this, we utilize the relationship between the number of boundary hyperplanes and that of channel
vectors to study how many neurons are required to let LEN approach GEN. For GENs or LENs, the number
of channel vectors is larger than the number of boundary hyperplanes, according to Theorem 4.2. Inversely,
for f ∈ GENs, if there are k boundary hyperplanes of some output function k, we can construct some specific
βi = 1 and αi for i ∈ [k] such that f −

∑k
i=1 βiσ(⟨αi, x⟩) has no boundary hyperplanes, which then can be

represented as a linear function ⟨α0, x⟩ = σ(⟨α0, x⟩) − σ(⟨−α0, x⟩). Therefore, for GENs, we can compress
neurons to make the number of channel vectors equal to the number of boundary hyperplanes plus two.

As for LENs, we prove the following lemma that deals with all symmetric channel vectors as a whole.
Lemma 6.1. Let

∑ℓ
i=1 βi

∑
g∈G σ(⟨ρTg αi, x⟩) be an output function of LENs with αi ̸= 0 for all i ∈ [ℓ].

Denote Mi = {ρTg αi/∥ρTg αi∥ : g ∈ G} as the normalized orbit induced by αi. Then, we have Mi = Mj or
Mi ∩Mj = ϕ for all i, j ∈ [ℓ]. Moreover, if Mi = Mj, we have∑

g∈G
σ(⟨ρTg αi, x⟩) = kij

∑
g∈G

σ(⟨ρTg αj , x⟩),

which enables us to reformulate the output function as
∑ℓ′

i=1 β̃i
∑
g∈G σ(⟨ρTg α̃i, x⟩) such that M̃i ∩ M̃j = ϕ

for all i, j ∈ [ℓ′]. Furthermore, for each M̃i, we can then merge all parallel channel vectors, since∑
g∈G

σ(⟨ρTg α̃i, x⟩) = |Stab(α̃i)|
∑

g∈G/Stab(α̃i)

σ(⟨ρTg α̃i, x⟩),

where Stab(α) = {g ∈ G : ρTg α = α} is the stabilizer subgroup with respected to α. As a result, in the
equivalent form

∑ℓ′

i=1 β̃i|Stab(α̃i)|
∑
g∈G/Stab(α̃i) σ(⟨ρTg α̃i, x⟩), there are not two channel vectors of the same

direction.

According to Lemma 6.1, we can construct LENs whose channel vectors are not parallel. Hence, the number
of channel vectors is no more than double the number of boundary hyperplanes plus two. Therefore, the
minimum required model size of LENs is approximately no more than double that of GENs, which is
summarized in the following theorem with some technical modifications.
Theorem 6.2. LENs require at most double model size to represent all invariant output functions of GENs.

This result indicates that enforcing layer-wise equivariance would be competitive among all methods of
incorporating equivariance.

6.2 Non-realizable Case

We now consider the non-realizable problem. With the same model size, enforcing equivariance may hurt the
expressive power. We prove that when the networks have a larger model size, LENs may achieve a comparable
and even better expressive power. We start with the following theorem, which shows a comparable expressive
power when the model size is enlarged |G| times.
Theorem 6.3. Let s be any invariant target function. Denote by Qf the projection of f to the equivariant
space, defined as Qf = 1

|G|
∑
g∈G f ◦ ρg. If the data distribution is symmetric, then we have that

E[∥Qf(x) − s(x)∥2
2] ≤ E[∥f(x) − s(x)∥2

2],

for all approximator f . Specifically, if f is an output function of GNs, Qf can be an output function of
GENs/LENs with a |G| times model size, implying that GENs/LENs can fix the expressive power gap and
achieve a smaller expected loss by a larger model size.

When the GN has an output function f(x) =
∑n
i=1 βiσ(⟨αi, x⟩), the weight matrices of GENs/LENs can be

formulated as

W (2) = 1
|G|

[β1, . . . , β1︸ ︷︷ ︸
|G|

, . . . , βm, . . . , βm︸ ︷︷ ︸
|G|

], and

W (1) = [ρTg1
α1, . . . , ρ

T
g|G|

α1, . . . , ρ
T
g1
αm, . . . , ρ

T
g|G|

αm]T ,
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which implies comparable expressive power while requiring a model size proportional to |G|. Meanwhile, the
weight matrices can be generated in two steps: (1) copy the same number of original channel vectors, and
(2) generate all symmetric channel vectors to make the network equivariant. Therefore, although LENs have
a larger model size, they have the same number of learnable parameters. As a result, the dimensionality of
the hypothesis space can be reduced by selecting fewer original channel vectors or by constraining them to
a subspace, while maintaining comparable expressive power.

If we use the method in Lemma 6.1 to compress the networks, we can further get an even better result. More
precisely, we can let the weight matrices be

W (2) = [β1, . . . , β1︸ ︷︷ ︸
C1

, . . . , βm, . . . , βm︸ ︷︷ ︸
Cm

], and

W (1) = [ρTg11
α1, . . . , ρ

T
g1C1

α1, . . . , ρ
T
gm1

αm, . . . , ρ
T
gmCm

αm]T ,

where αi is constrained to satisfy |{ρTg αi : g ∈ G}| = Ci, and gij is chosen to satisfy {ρTgi,j
αi : j ∈ [Ci]} =

{ρTg αi : g ∈ G}. Similarly, this model still has comparable expressive power, but a lower-dimensional
hypothesis space, since we constrain all first-layer channel vectors within a (sub-)space.

6.3 Enlarged LEN with Smaller Hypothesis Complexity

While increasing model size allows LENs to achieve comparable expressive power to GNs, a natural concern
is that this may harm the generalizability. In this section, we revisit Example 5.1 to demonstrate that
despite requiring more neurons, LENs can still maintain a less complex hypothesis space than GNs. This
lower complexity is significant as it suggests that LENs can achieve better generalizability.

As discussed in Section 5, a LEN with six neurons and a GN with three neurons can represent the same
target function. With the permutation representation ψ defined as

ψg =


0 1
1 0

0 1
1 0

0 1
1 0

 , ψh =


1 0
0 1

1 0
0 1

0 1
1 0

 .

Then the output function of the LEN can be formulated as

b1[σ(c1x+ c2y) + σ(c2x+ c1y)]
+b1[σ(−c1x− c2y) + σ(−c2x− c1y)]
+b2[σ(c3x− c3y) + σ(−c3x+ c3y)].

From this formulation, we can determine that is characterized by five parameters, meaning its parameter
space is R5. In contrast, a three-neuron GN is defined as

∑3
i=1 βiσ(c1x+ c2y), which involves 9 parameters,

resulting in a larger parameter space of R9.

The key insight here is that although LENs may have a larger model size to maintain the expressive power,
their inherent structural constraints could lead to a lower-dimensional hypothesis space. Consequently, this
reduced complexity implies that LENs are expected to exhibit superior generalizability compared to standard
GNs in this scenario.

7 Conclusions

Equivariant neural networks leverage data symmetries as a structural inductive bias, leading to significant
success across various applications. Despite their popularity, their expressive power is not yet fully under-
stood. This study evaluates how enforcing equivariance influences the expressive power of two-layer ReLU
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networks. By analyzing boundary hyperplanes and channel vectors, we show that these constraints can
inherently limit a model’s expressive power. We demonstrate, however, that this limitation can be compen-
sated for by increasing model scale, through formal upper bounds for the necessary expansion. Notably, our
findings reveal that these larger equivariant architectures possess a reduced hypothesis space dimensionality,
suggesting superior generalization potential.

References
Tara Akhound-Sadegh, Laurence Perreault-Levasseur, Johannes Brandstetter, Max Welling, and Siamak

Ravanbakhsh. Lie point symmetry and physics-informed networks. Advances in Neural Information
Processing Systems, 36:42468–42481, 2023.

Sarp Aykent and Tian Xia. Gotennet: Rethinking efficient 3d equivariant graph neural networks. In The
Thirteenth International Conference on Learning Representations, 2025.

Waiss Azizian and marc lelarge. Expressive power of invariant and equivariant graph neural networks. In
International Conference on Learning Representations (ICLR), 2021.

Michael M Bronstein, Joan Bruna, Taco Cohen, and Petar Veličković. Geometric deep learning: Grids,
groups, graphs, geodesics, and gauges. arXiv preprint arXiv:2104.13478, 2021.

Haiwei Chen, Shichen Liu, Weikai Chen, Hao Li, and Randall Hill. Equivariant point network for 3d point
cloud analysis. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2021.

Taco Cohen and Max Welling. Group equivariant convolutional networks. In International Conference on
Machine Learning (ICML). PMLR, 2016.

Taco S. Cohen and Max Welling. Steerable CNNs. In International Conference on Learning Representations
(ICLR), 2017.

Taco S Cohen, Mario Geiger, and Maurice Weiler. A general theory of equivariant cnns on homogeneous
spaces. Neural Information Processing Systems (NeurIPS), 2019.

Stephan Eismann, Raphael JL Townshend, Nathaniel Thomas, Milind Jagota, Bowen Jing, and Ron O
Dror. Hierarchical, rotation-equivariant neural networks to select structural models of protein complexes.
Proteins: Structure, Function, and Bioinformatics, 2021.

Bryn Elesedy and Sheheryar Zaidi. Provably strict generalisation benefit for equivariant models. International
Conference on Machine Learning (ICML), 2021.

Felix A Faber, Alexander Lindmaa, O Anatole Von Lilienfeld, and Rickard Armiento. Machine learning
energies of 2 million elpasolite (a b c 2 d 6) crystals. Physical review letters, 2016.

Marc Finzi, Max Welling, and Andrew Gordon Wilson. A practical method for constructing equivariant
multilayer perceptrons for arbitrary matrix groups. In International Conference on Machine Learning
(ICML). PMLR, 2021.

Fabian Fuchs, Daniel Worrall, Volker Fischer, and Max Welling. Se (3)-transformers: 3d roto-translation
equivariant attention networks. Advances in neural information processing systems, 33:1970–1981, 2020.

Lingshen He, Yuxuan Chen, Yiming Dong, Yisen Wang, Zhouchen Lin, et al. Efficient equivariant network.
NIPS, 2021.

Emiel Hoogeboom, Victor Garcia Satorras, Clement Vignac, and Max Welling. Equivariant diffusion for
molecule generation in 3d. In International Conference on Machine Learning (ICML). PMLR, 2022.

Michael J Hutchinson, Charline Le Lan, Sheheryar Zaidi, Emilien Dupont, Yee Whye Teh, and Hyunjik
Kim. Lietransformer: Equivariant self-attention for lie groups. In International Conference on Machine
Learning (ICML). PMLR, 2021.

12



Mohammad Mohaiminul Islam, Rishabh Anand, David R Wessels, Friso de Kruiff, Thijs P Kuipers, Rex
Ying, Clara I Sánchez, Sharvaree Vadgama, Georg Bökman, and Erik J Bekkers. Platonic transformers:
A solid choice for equivariance. arXiv preprint arXiv:2510.03511, 2025.

Xuelian Jiang, Tongtian Zhu, Yingxiang Xu, Can Wang, Yeyu Zhang, and Fengxiang He. Lie symme-
try net: Preserving conservation laws in modelling financial market dynamics via differential equations.
Transactions on Machine Learning Research, 2025.

Charilaos I Kanatsoulis and Alejandro Ribeiro. Graph neural networks are more powerful than we think. In
ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
pp. 7550–7554. IEEE, 2024.

Johannes Klicpera, Janek Groß, and Stephan Günnemann. Directional message passing for molecular graphs.
International Conference on Learning Representations (ICLR), 2020.

Risi Kondor. The principles behind equivariant neural networks for physics and chemistry. Proceedings of
the National Academy of Sciences, 122(41):e2415656122, 2025.

Hannah Lawrence, Kristian Georgiev, Andrew Dienes, and Bobak Kiani. Implicit bias of linear equivariant
networks. International Conference on Machine Learning (ICML), 2022.

Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan Di, and Baoquan Chen. Pointcnn: Convolution on
x-transformed points. Neural Information Processing Systems (NeurIPS), 31, 2018.

Haggai Maron, Heli Ben-Hamu, Nadav Shamir, and Yaron Lipman. Invariant and equivariant graph networks.
arXiv preprint arXiv:1812.09902, 2018.

Haggai Maron, Ethan Fetaya, Nimrod Segol, and Yaron Lipman. On the universality of invariant networks.
In International Conference on Machine Learning (ICML). PMLR, 2019.

Marco Pacini, Mircea Petrache, Bruno Lepri, Shubhendu Trivedi, and Robin Walters. On universality of
deep equivariant networks. arXiv preprint arXiv:2510.15814, 2025.

Stefanos Pertigkiozoglou, Evangelos Chatzipantazis, Shubhendu Trivedi, and Kostas Daniilidis. Improving
equivariant model training via constraint relaxation. Advances in Neural Information Processing Systems,
37:83497–83520, 2024.

Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning on point sets for 3d
classification and segmentation. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 652–660, 2017.

Tian Qin, Fengxiang He, Dingfeng Shi, Wenbing Huang, and Dacheng Tao. Benefits of permutation-
equivariance in auction mechanisms. Neural Information Processing Systems (NeurIPS), 2022.

Siamak Ravanbakhsh. Universal equivariant multilayer perceptrons. In International Conference on Machine
Learning (ICML). PMLR, 2020.

Akiyoshi Sannai, Masaaki Imaizumi, and Makoto Kawano. Improved generalization bounds of group invari-
ant/equivariant deep networks via quotient feature spaces. In Uncertainty in Artificial Intelligence (UAI).
PMLR, 2021.

Victor Garcia Satorras, Emiel Hoogeboom, Fabian B Fuchs, Ingmar Posner, and Max Welling. E(n) equiv-
ariant normalizing flows for molecule generation in 3d. arXiv preprint arXiv:2105.09016, 2021.

Hoo-Chang Shin, Holger R Roth, Mingchen Gao, Le Lu, Ziyue Xu, Isabella Nogues, Jianhua Yao, Daniel
Mollura, and Ronald M Summers. Deep convolutional neural networks for computer-aided detection: Cnn
architectures, dataset characteristics and transfer learning. IEEE transactions on medical imaging, 2016.

Junqi Tang. Equivariance regularization for image reconstruction. arXiv preprint arXiv:2202.05062, 2022.

13



Thuan Anh Trang, Nhat Khang Ngo, Daniel T Levy, Thieu Ngoc Vo, Siamak Ravanbakhsh, and Truong Son
Hy. E (3)-equivariant mesh neural networks. In International Conference on Artificial Intelligence and
Statistics, pp. 748–756. PMLR, 2024.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua Bengio.
Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Boyan Wan, Yifei Shi, Xiaohong Chen, and Kai Xu. Equivariant diffusion model with a5-group neurons
for joint pose estimation and shape reconstruction. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2025.

Dian Wang, Robin Walters, and Robert Platt. SO(2)-equivariant reinforcement learning. In International
Conference on Learning Representations, 2022.

Maurice Weiler and Gabriele Cesa. General e (2)-equivariant steerable cnns. Neural Information Processing
Systems (NeurIPS), 2019.

Maurice Weiler, Fred A Hamprecht, and Martin Storath. Learning steerable filters for rotation equivariant
cnns. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018.

Robin Winter, Marco Bertolini, Tuan Le, Frank Noe, and Djork-Arné Clevert. Unsupervised learning of
group invariant and equivariant representations. Advances in Neural Information Processing Systems, 35:
31942–31956, 2022.

Renjun Xu, Kaifan Yang, Ke Liu, and Fengxiang He. E(2)-equivariant vision transformer. In Uncertainty
in Artificial Intelligence, pp. 2356–2366. PMLR, 2023.

Dmitry Yarotsky. Universal approximations of invariant maps by neural networks. Constructive Approxi-
mation, 2021.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Ruslan Salakhutdinov, and Alexan-
der Smola. Deep sets. arXiv preprint arXiv:1703.06114, 2017.

A Proof of Theorem 4.2

Proof. We verify that the boundary hyperplane is well-defined. Firstly, we should check the definition of
feature function F . Given the function F =

∑m
i=1 βiσ(⟨αi, x⟩), we could consider the set S = {x ∈ Rn :

⟨αi, x⟩ ̸= 0, ∀i ∈ [m]}. Of course its complementary set Sc is the union of some hyperplanes
⋃m
i=1 Mi, where

Mi = {x : ⟨αi, x⟩ = 0}. Then for any x ∈ S, one of ⟨αi, x⟩ > 0 and ⟨αi, x⟩ < 0 holds. For small enough
r, ⟨αi, x⟩ > 0 or ⟨αi, x⟩ < 0 holds for all y ∈ B(x, r). As a result, we have B(x, r) ⊂ S. While every
⟨αi, y⟩ does not change its sign for y ∈ B(x, r), the output function F is linear in B(x, r). Especially by
Riesz representation theorem, there exists a unique vector v such that F (y) = ⟨v, y⟩ on B(x, r). Combining
with that F (x) =

∑
i:⟨αi,x⟩>0 βi⟨αi, x⟩, we have F(x) =

∑
i:⟨αi,x⟩>0 αiβ

T
i for all x ∈ S. Moreover, for every

hyperplane M ̸= Mi for all i ∈ [m] and any continuous distribution m on it, we have x ∈ S almost surely.

For every x ∈ M of any given hyperplane M and v ̸∈ M , we have F(x + δv) is a constant when δ > 0 is
small enough, since x+ δv would not pass through any hyperplanes Mi as δ goes to 0. As a result, F(x+ δv)
converges to that constant uniformly, bounded by

∑m
i=1 ∥αiβTi ∥. Therefore, dominated convergence theorem

ensures that limE[F(x + δv)] = E[lim F(x + δv)]. Moreover, if x + δv is not in the the hyperplanes Mi (it
almost surely holds), x ∈ S implies lim F(y + δv) is a constant for all y ∈ B(x, r) ∩M for a small radius r.
Since lim F(x+ δv) is piece-wise constant, the expectation is well-defined.

For given M , we can compare lim F(x+δv) and lim F(x−δv) immediately. If x ̸∈ Mi for all i ∈ [m], we have
x ∈ S and then x+δv and x−δv are both in B(x, r) ⊂ S for small δ, resulting in that F(x+δv) = F(x−δv) for
small δ > 0. As a result, if M ̸= Mi for all i ∈ [m], x is in S and therefore F(x+δv) = F(x−δv) almost surely,
so that limE[F(x + δv)] = limE[F(x − δv)]. Otherwise, we can let F̃ = F −

∑
i:⟨αi,x⟩=0,∀x∈M βiσ(⟨αi, x⟩)

and thus
limE[F̃(x+ δv)] = limE[F̃(x− δv)].

14



Meanwhile, let G denote F − F̃ =
∑
i:⟨αi,x⟩=0,∀x∈M βiσ(⟨αi, x⟩), we have

G(x+ δv) − G(x− δv) =
∑

i:⟨αi,v⟩>0

αiβ
T
i −

∑
i:⟨αi,v⟩<0

αiβ
T
i , ∀x ∈ M.

Therefore, we have
E[G(x+ δv) − G(x− δv)] =

∑
i:⟨αi,v⟩>0

αiβ
T
i −

∑
i:⟨αi,v⟩<0

αiβ
T
i .

As a result, the hyperplane M is boundary hyperplane if and only if
∑
i:⟨αi,v⟩>0 αiβ

T
i ̸=

∑
i:⟨αi,v⟩<0 αiβ

T
i .

Moreover, if no αi satisfies that ⟨αi,M⟩ = 0, the hyperplane M is not a boundar hyperplane since∑
i:⟨αi,v⟩>0 αiβ

T
i = 0 =

∑
i:⟨αi,v⟩<0 αiβ

T
i . Inversely, if M is a boundary hyperplane, there exists some

channel vector α such that ⟨x,M⟩ = 0.

The proof is completed. In addition, we would like to use the feature function to characterize the boundary
hyperplane for future extension to multi-layer conditions, where the equivaENt condition would be more
complex. However, the feature functions can be similarly defined and therefore the boundary can be shaped.

B Proof of Lemma 4.4

For simplicity, we denote ei ∈ Rn as the vector (0, . . . , 1, . . . , 0)T , where the i-th entry is 1 and other entries
are all 0. Since ψg ◦ σ = σ ◦ ψg, we have ψσ(x) = σ(ψx) for all x ∈ Rn.

If there are two nonzero entries ψij < ψik in the same row of ψg, we can set x = ej − ek and then we have
(ψgσ(x))i = (ψgej)i = ψij while (σ(ψgx))i = σ(ψij − ψik) = 0. That implies ψij = 0, which contradicts.
Thus, each row has at most one nonzero entry. Hence, there are at most n nonzero entries of ψg, which are
in different rows.

Since ψg is invertible, each row and each column of ψg have at least one nonzero entry. It implies that there
are at least n nonzero entries of ψg. Thus, there are exactly n nonzero entries of ψg and ψg is a generalized
permutation matrix diag(λ1

g, . . . , λ
m
g )Pg.

Moreover, when ψij ̸= 0, we can set x = ej . Then σ(ψx) = ψσ(x) implies that σ(ψij) = ψij . From the
definition of ReLU, we have that ψij > 0. The proof is completed.

C Proof of Theorem 4.3

Proof. Let F be an invariant output function that can be represented as
∑m
i=1 βiσ(⟨αi, x⟩). Since F is

invariant, it can be also reformulated as

F = QF =
m∑
i=1

βi
|G|

∑
g∈G

σ(⟨αi, ρgx⟩).

Then the feature function can be

F(x) = 1
|G|

∑
i,g:⟨ρT

g αi,x⟩>0

ρTg αiβ
T
i .

Then, for every transformed point ρgx, we have

F(ρgx) = 1
|G|

∑
i,h:⟨ρT

h
αi,ρgx⟩>0

ρThαiβ
T
i = 1

|G|
∑

i,h:⟨ρT
hg
αi,x⟩>0

(ρTg )−1ρThgαiβ
T
i

=(ρTg )−1 1
|G|

∑
i,h:⟨ρT

h
αi,x⟩>0

ρThαiβ
T
i = (ρTg )−1F(x).
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As a result, F is somehow “equivariant". Moreover, let us consider the definition of boundary hyperplanes,
we have

lim
δ→0+

E[F(ρgx+ ρgv)] = lim
δ→0+

E[F(ρg(x+ v))] = (ρTg )−1 lim
δ→0+

E[F(x+ v)],

and

lim
δ→0+

E[F(ρgx− ρgv)] = lim
δ→0+

E[F(ρg(x− v))] = (ρTg )−1 lim
δ→0+

E[F(x− v)],

where v ̸∈ M and ρgv ̸∈ ρgM . Therefore, M is a boundary hyperplane if and only if ρgM is a boundary
hyperplane.

Besides, if we consider the equivaENt condition, M is a boundary hyperplane if and only if

∑
i,h:⟨ρT

hαi,v⟩>0
⟨ρT

hαi,M⟩=0

ρThαiβ
T
i ̸=

∑
i,h:⟨ρT

hαi,v⟩<0
⟨ρT

hαi,M⟩=0

ρThαiβ
T
i .

By contrast, that for ρgM is

∑
i,h:⟨ρT

hαi,ρgv⟩>0
⟨ρT

hαi,ρgM⟩=0

ρThαiβ
T
i ̸=

∑
i,h:⟨ρT

hαi,ρgv⟩<0
⟨ρT

hαi,ρgM⟩=0

ρThαiβ
T
i .

The LHS is equal to

∑
i,h:⟨ρT

hαi,ρgv⟩>0
⟨ρT

hαi,ρgM⟩=0

ρThαiβ
T
i =

∑
i,h:⟨ρT

hgαi,v⟩>0
⟨ρT

hgαi,M⟩=0

(ρTg )−1ρThgαiβ
T
i = (ρTg )−1

∑
i,h:⟨ρT

hαi,v⟩>0
⟨ρT

hαi,M⟩=0

ρThαiβ
T
i ,

while the RHS is equal to

∑
i,h:⟨ρT

hαi,ρgv⟩<0
⟨ρT

hαi,ρgM⟩=0

ρThαiβ
T
i =

∑
i,h:⟨ρT

hgαi,v⟩<0
⟨ρT

hgαi,M⟩=0

(ρTg )−1ρThgαiβ
T
i = (ρTg )−1

∑
i,h:⟨ρT

hαi,v⟩<0
⟨ρT

hαi,M⟩=0

ρThαiβ
T
i .

As a result, M and ρgM have the equivaENt conditions to be boundary hyperplanes, causing that M is a
boundary hyperplane if and only if ρgM is a boundary hyperplane. The proof is completed.

D Proof of Theorem 4.6

Proof. Due to W (1) ◦ ρg = ψg ◦W (1), and thus we have

W (1) = 1
|G|

∑
g∈G

ψ−1
g ◦W (1) ◦ ρg.
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Then F can be rewritten as:

F (x) =
[
β1 . . . βm

]
σ

([
α1 · · · αm

]⊤
x

)
=

[
β1 . . . βm

]
σ

 1
|G|

∑
g∈G

(
ψ−1
g

[
α1 · · · αm

])⊤
ρgx


=

[
β1 . . . βm

]
σ

 1
|G|

∑
g∈G

[
αPg(1)

(ψg)1,Pg(1)
· · · αPg(m)

(ψg)m,Pg(m)

]⊤
ρgx


= 1

|G|

m∑
i=1

βiσ

∑
g∈G

(
αPg(i)

(ψg)i,Pg(i)

)⊤

ρgx


= 1

|G|

m∑
i=1

βi
∥βi∥

σ

∑
g∈G

(
∥βi∥

(ψg)i,Pg(i)
αPg(i)

)⊤

ρgx


=

m∑
i=1

βi
∥βi∥

σ


∑
g∈G

1
|G|

ρ⊤
g ∥βPg(i)∥αPg(i)

⊤

x

 .

Denote β̃i = βi

∥βi∥ and α̃i =
∑
g∈G

1
|G|ρ

⊤
g ∥βPg(i)∥αPg(i), we get F (x) =

∑m
i=1 β̃iσ⟨α̃i, x⟩.

For new parameters, we have

ρ⊤
h α̃i = ρ⊤

h

∑
g∈G

1
|G|

ρ⊤
g βPg(i)αPg(i)

=
∑
g∈G

1
|G|

ρ⊤
ghβPg(i)αPg(i)

=
∑
g∈G

1
|G|

ρ⊤
ghβPgh(Ph−1 (i))αPg(Ph−1 (i))

= α̃Ph−1 (i),

which is a satisfied rewritten LEN.

E Proof of ENs’ Universal Represetation Ability

Proof. We construct the following ENs to represent all equivariant output functions of GNs. Let the output
function of GNs be W (L)σ(W (L−1)σ(. . . σ(W (1)x) . . . )). Let the weight matrices of ENs be

W̃ (L) = 1
|G|

(ϕ−1
g1
W (L), . . . , ϕ−1

g|G|
W (L)︸ ︷︷ ︸

|G|

)

W̃ (ℓ) = diag(W (ℓ), . . . ,W (ℓ)︸ ︷︷ ︸
|G|

), ∀ℓ = 2, 3, . . . , L− 1

W̃ (1) = ((W (1)ρg1)T , . . . , (W (1)ρg|G|)
T︸ ︷︷ ︸

|G|

)T ,
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where the group representation ψ in the intermediate layers is the corresponding permutation representation
acting on each axis egi as ψgegi = egig−1 . As a result, we have, ∀ℓ = 2, 3 . . . , L− 1,

W̃ (1)ρg =


W (1)ρg1

W (1)ρg2
...

W (1)ρg|G|

 ρg =


W (1)ρg1g

W (1)ρg2g

...
W (1)ρg|G|g

 = ψg


W (1)ρg1

W (1)ρg2
...

W (1)ρg|G|

 = ψgW̃
(1),

W̃ (ℓ)ψg =diag(W (ℓ), . . . ,W (ℓ)︸ ︷︷ ︸
|G|

)ψg = diag(W (ℓ), . . . ,W (ℓ)︸ ︷︷ ︸
|G|

) = ψgdiag(W (ℓ), . . . ,W (ℓ)︸ ︷︷ ︸
|G|

) = ψgW̃
(ℓ),

W̃ (L)ψg = 1
|G|

(ϕ−1
g1
W (L), . . . , ϕ−1

g|G|
W (L)︸ ︷︷ ︸

|G|

)ψg = 1
|G|

(ϕ−1
g1g−1W

(L), . . . , ϕ−1
g|G|g−1W

(L)︸ ︷︷ ︸
|G|

)

= 1
|G|

ϕg(ϕ−1
g1
W (L), . . . , ϕ−1

g|G|
W (L)︸ ︷︷ ︸

|G|

)

As a result, the constructed network has the same output function QF and equivariant layers, renders it an
EN. The proof is completed.

F Proof of Lemma 6.1

Proof. Denote M = {ρTg α/∥ρTg α∥ : g ∈ G} and N = {ρTg β/∥ρTg β∥ : g ∈ G}, where α and β are two nonzero
vectors in Rn. Then we prove that M ∩N = ∅ or M = N .

If M ∩N ̸= ∅, there exist group elements g0, h0 ∈ G such that ρTg0
α/∥ρTg0

α∥ = ρTh0
β/∥ρTh0

β∥. Then, for any
element ρTg α/∥ρTg α∥ ∈ M , there exists ρT

h0g
−1
0 g

β/∥ρT
h0g

−1
0 g

β∥ ∈ N such that

ρT
h0g

−1
0 g

β = ρTg ρ
T
g−1

0
ρTh0

β =
∥ρTh0

β∥
∥ρTg0

α∥
· ρTg α and

ρT
h0g

−1
0 g

β

∥ρT
h0g

−1
0 g

β∥
=

ρTg α

∥ρTg α∥
.

It implies that M ⊂ N . Inversely, we can prove that N ⊂ M in the same way. Hence, combining M ⊂ N
and N ⊂ M , we have M = N . Moreover, when denoting M̃ = {ρTg α : g ∈ G}, we can also prove that
|M̃ | = |M |. If there exist g, h ∈ G such that ρTg α/∥ρTg α∥ = ρThα/∥ρThα∥, we have ρTg α = cρThα with some
positive number c since they have the same direction. Then, we have ρTgh−1α = cα and

(ρTgh−1)|G|α = (ρTgh−1)|G|−1cα = (ρTgh−1)|G|−2c2α = · · · = c|G|α.

Meanwhile, since (gh−1)|G| = e ∈ G, we have (ρTgh−1)|G|α = ρTe α = α. It implies that c|G| = 1 and thus

c = 1. Finally, we have that ρTg α = ρThα ⇔ ρT
g α

∥ρT
g α∥ = ρT

hα

∥ρT
h
α∥ , which indicates that |M̃ | = |M |. Therefore, if

M = N , we have M̃ = kÑ for some k > 0.

In particular, if there exist two parallel channel vectors ρTs αi and ρTt αj , we can assume ρTs αi = kρTt αj for
some k > 0 and then we have

Oi = {ρTg (ρTs αi) : g ∈ G} = {ρTg (kρTt αj) : g ∈ G} = k{ρTg (ρTt αj) : g ∈ G} = kOj .

Moreover, ENs can merge these channels as∑
g∈G

βiσ(⟨ρTg αi, x⟩) + βjσ(⟨ρTg αj , x⟩) =
∑
g∈G

(kβi + βj)σ(⟨ρTg αj , x⟩)

As a result, we can find an EN of the same output function such that ρTg αi/∥ρTg αi∥ ̸= ρThαj/∥ρThαj∥ for all
i ̸= j.
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Furthermore, we can define the stabilizer subgroup Stab(α) = {g : ρTg αi} and therefore G = Stab(α) ⊕ M̃
with ∑

g∈G
f(ρTg α) =

∑
h∈G/Stab(α)

∑
gh−1∈Stab(α)

f(ρTg α) = |Stab(α)| ·
∑

h∈G/Stab(α)

f(ρThα).

The proof is completed.

G Proof of Theorem 6.2

Proof. We consider the following conditions with given invariant output function of GNs F (x) =∑m
i=1 βiσ(⟨αi, x⟩. Denote the number of boundary hyperplane of F (x) by N .

If N ≤ m − 1, we can construct the EN of Lemma 6.1, where we let the output function be formulated as
QF (x) = 1

|G|
∑m
i=1 βi

∑
g∈G σ(⟨ρTg αi, x⟩). Lemma 6.1 implies that the number of channel vectors m′ after

merging is at most double the number of boundary hyperplanes plus 2, and therefore,

m′ ≤ 2N + 2 ≤ 2(m− 1) + 2 = 2m.

If N = m, there are m boundary hyperplanes M1, . . . ,Mm and we can assume ⟨αi,Mi⟩ = 0 for all i ∈ [m]
without loss of generality. Theorem 4.3 indicates that all the boundary hyperplanes are symmetric, enable
us to classifier them as S1 = {Mk0+1, . . . ,Mk1}, . . . , Sl+1 = {Mkl+1, . . . ,Mkl+1} with k0 = 0 and kl+1 = m,
where each set collects all symmetric boundary hyperplanes. Then consider the orbits Oi = {ρTg αi : g ∈
G}, we have Oi = kijOj for all i, j in the same classification set S. Lemma 6.1 implies that the sum

1
|G|

∑m
i=1 βi

∑
g∈G σ(⟨ρTg αi, x⟩) can be formulated by the sum of at most 2m items, resulting in m′ ≤ 2m

also.

The proof is completed.
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