Robustness Challenges of Large Language Models in Natural Language
Understanding: A Survey

Mengnan Du!, Fengxiang He?, Na Zou!, Dacheng Tao?, and Xia Hu®
'Texas A&M University
2JD Explore Academy
3Rice University

dumengnan@tamu.edu,

hefengxiang@jd.com, nzoul@tamu.edu

dacheng.tao@gmail.com, xia.hu@rice.edu

Abstract

Large language models (LLMs) have achieved
state-of-the-art performance on a series of nat-
ural language understanding tasks. However,
these LLMs might rely on dataset bias and arti-
facts as shortcuts for prediction. This has sig-
nificantly hurt their Out-of-Distribution (OOD)
generalization and adversarial robustness. In
this paper, we provide a review of recent devel-
opments that address the robustness challenge
of LLMs. We first introduce the concepts and
robustness challenge of LLMs. We then in-
troduce methods to identify shortcut learning
behavior in LLMs, characterize the reasons for
shortcut learning, as well as introduce mitiga-
tion solutions. Finally, we identify key chal-
lenges and introduce the connections of this
line of research to other directions.

1 Introduction

Large language models (LLMs), such as
BERT (Devlin et al., 2019), RoBERTa (Liu et al.,
2019), T5 (Raffel et al., 2020), GPT-3 (Brown
et al., 2020), have achieved state-of-the-art perfor-
mance in a series of high-level natural language
understanding (NLU) tasks, such as natural
language inference (NLI), question answering
(QA), etc. However, the superior performance has
only been observed in the benchmark test data
that have the same distribution as the training set.
Recent studies indicate that these LLMs are not
robust and that the models do not remain predictive
when the distribution of inputs changes (Niven and
Kao, 2019; Utama et al., 2020b; Du et al., 2021a).
Specifically, these LLMs have low generalization
performance when applied to out-of-distribution
(OOD) test data and are also vulnerable to various
types of adversarial attack.

A major reason for the low robustness of LLMs
is shortcut learning. The shortcut learning behav-
ior has also been called other names in the liter-
ature, such as learning bias, superficial correla-
tions, Clever Hans effect, etc. (Heinzerling, 2019;

Lapuschkin et al., 2019). The shortcut learning
behavior has been observed for a series of NLU
tasks. For example, recent empirical analysis indi-
cates that the performance of BERT-like models for
the NLI task could be mainly explained by relying
on spurious statistical cues such as unigrams ‘not’,
‘do’, ‘is’ and bigrams ‘will not’ (Niven and Kao,
2019; Gururangan et al., 2018). Similarly, for the
reading comprehension task, the models rely on the
lexical matching of words between the question and
the original passage, while ignoring the designed
reading comprehension task (Lai et al., 2021). The
current standard approach to training LL.M is us-
ing empirical risk minimization (ERM) on NLU
datasets that typically contain various types of ar-
tifacts and biases. As such, LLMs have learned to
rely on dataset artifacts and biases and capture their
spurious correlations with certain class labels as
shortcuts for prediction. Shortcut learning has sig-
nificantly hurt the models’ robustness, thus attract-
ing increasing attention from the NLP community
to address this issue.

In this work, we provide a review of the shortcut
learning problem in LLMs, including its concept
and robustness challenges in Section 2, detection
approaches in Section 3, characterization of the
corresponding reasons in Section 4, and mitigation
approaches in Section 5. We also provide a fur-
ther discussion of future research directions and
connection with other directions in Sections 6 and
7. Note that in this work we mainly focus on the
widely used pre-training and fine-tuning paradigm
of LLMs in NLU tasks (see Figure 2).

2 Shortcut Learning Phenomena

2.1 What is Shortcut Learning?

Features captured by the model can be broadly cat-
egorized as useless features, robust features, and
non-robust features (Ilyas et al., 2019) (see Fig-
ure 1). Shortcut learning refers to the phenomenon
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Figure 1: Features can be generally grouped into useless features, robust features, and non-robust features. Non-
robust features indicate various kinds of biases captured by the model, which are not robust in the OOD setting. In
contrast, robust features denote features of high-level semantic understanding that are robust to changes in the input.

that LL.Ms (especially those trained with standard
ERM-based method) highly rely on non-robust fea-
tures as shortcuts, failing to learn robust features
and capture high-level semantic understanding and
reasoning. Non-robust features do help generaliza-
tion for development and test sets that share the
same distribution with training data. However, they
cannot generalize to OOD test sets and are vulnera-
ble to adversarial attacks. Non-robust features are
oriented from biases in the training data and come
in different formats. In the following, we introduce
several representative ones.

* Lexical Bias: Some lexical features have a high
correlation of co-occurrence with certain class la-
bels. These lexical features mainly consist of low-
level functional words such as stop words, num-
bers, negation words, etc. One typical example is
the NLI task, where LLMs are highly dependent
on unintended lexical features to make predic-
tions (Niven and Kao, 2019; Du et al., 2021a).
For example, these models tend to give contra-
diction predictions whenever there exist negation
words, e.g., ‘never’, ‘no’, in the input samples.

* Overlap Bias: It occurs in NLU applications
with two branches of text, e.g. NLI, QA, and
reading comprehension (Zhou and Bansal, 2020;
McCoy et al., 2019). LLMs use the overlap of
features between the two branches of inputs as
spurious correlations as shortcuts. For example,
reading comprehension models use the overlap
between the passage and question pair for predic-
tion rather than solving the underlying task (Lai
et al., 2021). Similarly, QA models excel at test
sets by relying on heuristics of question and con-
text overlap (Sen and Saffari, 2020).

* Position Bias: The distribution of the answer po-
sitions may be highly skewed in the training set
for some applications. The LLMs would pre-
dict answers based on spurious positional cues.
Take the QA task for example, the answers lie

only in the k-th sentence of each passage (Ko
et al., 2020). As a result, QA models rely on this
spurious cue when predicting answers.

» Style Bias: Text style is a kind of pattern that is
independent of semantics (DiMarco and Hirst,
1993). Models have learned to rely on the spuri-
ous text style as shortcuts, which can be further
utilized for adversarial attacks (Qi et al., 2021).

2.2 Generalization and Robustness Challenge

The shortcut learning behavior could significantly
hurt LLMs” OOD generalization as well as adver-
sarial robustness. First, shortcut learning could
lead to a high degradation of performance for OOD
data. A common assumption is that training and
test data are independently and identically dis-
tributed (IID). This IID assumption will not hold
when LLMs are deployed in real-world applica-
tions that exist distribution shifts. These data typ-
ically do not contain the same types of bias and
artifacts as the training data (Koh et al., 2021).

1ID: Ptr(u’n (X, Y) = Ptest(X7 Y)

1
OOD: Ptr(u’n (X7 Y) 7é Ptest(X7 Y) ( )

Taking BERT-base for example, there is a reduc-
tion in accuracy of more than 20% on the OOD test
set, compared to the accuracy on the in-distribution
test sets for three NLU tasks (Du et al., 2021b). To
some extent, these models have solved the dataset
rather than the underlying task. Second, short-
cut learning also results in models that could be
easily fooled by adversarial samples, when small
and often imperceptible human-crafted perturba-
tions are added to the normal input (Wang et al.,
2021a). One typical example is for the multiple
choice reading comprehension task (Si et al., 2019).
BERT models are attacked by adding distracting
information, resulting in a significant performance
drop. Further analysis indicates that these mod-
els are highly driven by superficial patterns, which
inevitably leads to their adversarial vulnerability.



3 Identification of Shortcut Learning

In this section, we discuss methods to identify
shortcut learning problems in NLU models.

3.1 Comprehensive Performance Testing

Traditional evaluations employ IID training-test
split of data (Agrawal et al., 2018). The test sets
are drawn from the same distribution as the training
sets and thus share the same kind of biases as the
training data. Models that simply rely on memoriz-
ing superficial patterns could perform acceptablely
on the IID test set. This type of evaluation has
failed to identify the shortcut learning problem.
Therefore, it is desirable to perform more compre-
hensive tests beyond the traditional IID testing.

First, the OOD generalization test has been
proposed as an alternative to the IID test. Take
MNLI (Williams et al., 2018) for example, the
HANS evaluation set is proposed to evaluate
whether NLI models have syntactic heuristics: the
lexical overlap heuristic, the subsequence heuris-
tic, and the constituent heuristic (McCoy et al.,
2019). Similarly, for the FEVER fact verification
task (Thorne et al., 2018), a symmetric test set
is constructed that shares a philosophy similar to
HANS (Schuster et al., 2019). These OOD tests
have revealed dramatic performance degradation
and exposed the shortcut learning problem of state-
of-the-art LLMs.

Second, adversarial attacks could also be imple-
mented to test the robustness of LLMs. For exam-
ple, adversarial attacks have been used to reveal
statistical bias in machine reading comprehension
models (Lai et al., 2021). The adversarial exam-
ples created through TextFooler (Jin et al., 2020)
are used to test the generalization of common sense
reasoning models (Branco et al., 2021). The results
indicate that the models have learned non-robust
features and fail to generalize towards the main
tasks associated with the datasets.

Third, randomization ablation methods are pro-
posed to analyze whether LLLMs have used these
essential factors to achieve effective language un-
derstanding. For example, word order is a represen-
tative one among these significant factors. Recent
ablation results indicate that word order does not
matter for pre-trained language models (Sinha et al.,
2021). In particular, LLMs are pre-trained first on
sentences with randomly shuffled word order and
then fine-tuned on various downstream tasks. The
results show that these models still achieve high ac-

curacy. Similarly, another study (Pham et al., 2020)
has observed that LLMs are insensitive to word
order in a wide set of tasks, including the entire
GLUE benchmark (Wang et al., 2019). These ex-
periments indicate that LLMs have ignored the syn-
tax when performing downstream tasks, and their
success can almost be explained by their ability to
model higher-order word co-occurrence statistics.

3.2 Explainability Analysis

DNN explainability is another effective tool that
the community has used to identify the shortcut
learning problem. LLMs are usually considered
black boxes, as their decision-making process is
opaque and difficult for humans to understand. This
presents challenges in identifying whether these
models make decisions based on justified reasons
or on superficial patterns. Explainability enables us
to diagnose spurious patterns captured by LLMs.
The existing literature mainly employs the ex-
planation in the format of feature attribution to
analyze shortcut learning behavior in NLU mod-
els (Wang et al., 2021c; Du et al., 2021a). Fea-
ture attribution is the most representative paradigm
among all explainability-based methods. In partic-
ular, for each token x; within a specific input z,
the feature attribution algorithm ¢ will calculate
the contribution score 1;, which denotes the con-
tribution score of that token for model prediction.
For example, the Integrated Gradient (Sundarara-
jan et al., 2017) interpretation method is used to
analyze the model behavior of BERT-based mod-
els (Du et al., 2021a). It is observed that LLMs rely
on dataset artifacts and biases within the hypoth-
esis sentence for prediction, including functional
words, negation words, etc. (Du et al., 2021a). This
shortcut learning behavior is summarized further
using the long-tailed phenomenon. Specifically, the
tokens in the training set could be modeled using
a long-tailed distribution. The LLM models con-
centrate mainly on information on the head of the
distribution, which typically corresponds to non-
generalizable shortcut tokens. In contrast, the tail
of the distribution is poorly learned, although it
contains abundant information for an NLU task.
Beyond feature attribution, other types of ex-
plainability methods have also been used to analyze
shortcut learning behaviors (Han and Tsvetkov,
2021). For example, instance attribution methods
have been used to explain model prediction by iden-
tifying influential training data, which can be used
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Figure 2: The pre-training then fine-tuning training paradigm. Shortcut learning can be attributed to different factors
in this pipeline, including pre-trained language models, fine-tuning process, and downstream tasks.

to explain decision making logic for the current
sample of interest (Han et al., 2020b). Empirical
analysis indicates that the most influential training
data share similar artifacts, e.g., high overlap be-
tween the premise and hypothesis for the NLI task.
Furthermore, hybrid methods that combine feature
attribution and instance attribution have also been
used to identify artifacts in the data (Pezeshkpour
et al., 2021). The resulting explanations have pro-
vided a more comprehensive perspective on the
shortcut learning behavior of LLMs.

4 Origins of Shortcut Learning

The issue of learning shortcuts in NLU models orig-
inates from different factors in the training pipeline
(see Figure 2). In this section, we analyze these rea-
sons, particularly focusing on the following three
factors: training datasets, LLM model, and the fine-
tuning training process.

4.1 Skewed Training Dataset

From the data perspective, the shortcut learning of
the NLU models can be traced to a large extent
to the annotation artifacts and collection artifacts
of the training data (here we mainly refer to the
downstream datasets in Figure 2). Training sets are
typically built through the crowd-sourcing process,
which has the advantage of being low-cost and scal-
able. However, the crowd-sourcing process results
in collection artifacts, where the training data are
imbalanced with respect to features and class labels.
Furthermore, when crowd workers author parts of
the samples, they produce certain patterns of arti-
facts, i.e. annotation artifacts (Gururangan et al.,
2018). Taking NLI as an example, the average sen-
tence length of the hypothesis branch is shorter for
the entailment category compared to the neutral
category (Gururangan et al., 2018). This suggests
that crowd workers tend to remove words from the
premise to create a hypothesis for the entailment
category, leading to the overlap bias in the train-
ing data. Models trained on the skewed datasets
will capture these artifacts and even amplify them
during inference time.

4.2 LLMs Models

The robustness of NLU models is highly relevant to
the pre-finetuned LLMs models. In particular, there
are two key factors: model sizes (measured by the
number of parameters) and pre-training objectives.

First, models with the same kind of architec-
tures and pre-training objective but with different
sizes could have significantly different generaliza-
tion ability. It is shown that increasing the size of
the model could lead to an increase in the repre-
sentation power and generalization ability. From
the empirical perspective, comparisons have been
made between LLMs of different sizes but with
the same architecture, e.g., BERT-base with BERT-
large, RoBERTa-base with RoBERTa-large (Tu
et al., 2020; Bhargava et al., 2021). The results
indicate that the larger versions generally general-
ize consistently better than the base versions, with
a significantly smaller accuracy gap between the
OQOD and IID test data. The smaller models have
fewer parameters than the larger model and their
model capacity is smaller. Therefore, smaller mod-
els are more prone to capture spurious patterns and
are more dependent on data artifacts for predic-
tion (Sanh et al., 2021). Another work (Du et al.,
2021b) studies the impact of model compression
on the robustness and generalizability of LLMs and
finds that compressed LLMs are significantly less
robust compared to their uncompressed counter-
parts. Compressed models with knowledge distilla-
tion have also been shown to be more vulnerable
to adversarial attacks (Li et al., 2021). From a the-
oretical perspective, a recent analysis supports that
there is a trade-off between the size of a model and
its robustness, where large models tend to be more
robust (Bubeck and Sellke, 2021).

Second, LLMs with similar model sizes but with
different pre-training objectives also differ in the
generalization ability. Here, we consider three
kinds of LLMs: BERT, ELECTRA, and RoBERTa.
BERT is trained with masked language modeling
and next-sentence prediction. ROBERTa removes
the next-sentence prediction from BERT and uses
dynamic masking. ELECTRA is trained to dis-
tinguish between real input tokens and fake input



tokens generated by another network. Empirical
analysis shows that these three models have sig-
nificantly different levels of robustness (Prasad
et al., 2021). For the Adversarial NLI (ANLI)
dataset (Nie et al., 2020), it is shown that ELEC-
TRA and RoBERTa have significantly better perfor-
mance than BERT, for both the base and the large
versions. Similarly, another study has shown that
RoBERTa-base outperforms BERT-base around
20% in terms of accuracy on the HANS test
set (Bhargava et al., 2021). A possible reason is
that different inductive biases are encoded by the
models, since different architectures have distinct
object functions during the pre-training stage.

4.3 Model Fine-tuning Process

The learning dynamics could reveal what knowl-
edge has been learned during the course of model
training. There are some observations. First, stan-
dard training procedures generally have a bias to-
wards learning simple features (Shah et al., 2020).
The models are based mainly on the simplest fea-
tures and remain invariant to complex predictive
features. Moreover, it has been observed that the
models give overconfident predictions for easy sam-
ples and low-confidence predictions for hard sam-
ples. Second, models tend to learn non-robust and
easy-to-learn features at the early stage of train-
ing (Hermann and Lampinen, 2020). For example,
reading comprehension models have learned the
shortcut in the first few training iterations, which
has influenced further exploration of the models
for more robust features (Lai et al., 2021). Third,
longer fine-tuning could lead to better general-
ization. Specifically, a larger number of training
epochs dramatically improves the generalizability
of LLMs in NLU tasks (Tu et al., 2020).

The preference for non-robust features can be
explained from two perspectives. First, current
LLM training paradigms can be regarded as data-
driven, corpus-based, statistical, and machine learn-
ing methods (Saba, 2021). It is argued that this
data-driven paradigm might be useful in some NLP
tasks, which however are not even relevant to NLU
tasks that require high-level natural language under-
standing (Saba, 2021). Second, from the model op-
timization perspective, current practice uses gradi-
ent descent optimization. For instance, it has been
theoretically proven that gradient descent methods
tend to learn non-robust networks, by using a depth-
2 ReLU network as an example (Vardi et al., 2022).

5 Mitigation of Shortcut Learning

In this section, we introduce approaches that al-
leviate the problem of shortcut learning. These
methods are motivated mainly by the insights ob-
tained in the last section. In particular, Section 5.1
introduces methods based on dataset refinement.
The rest of the sections focus on model-centric mit-
igation approaches, typically augmenting the tradi-
tional ERM-based training paradigm with different
degrees of prior knowledge, explicitly or implicitly
suppressing the model from capturing non-robust
features. Some mitigation methods require that
the shortcuts be known a priori, while others as-
sume that the shortcuts are unknown. These can
be named robust learning methods, where the ul-
timate goal is to improve OOD generalization and
adversarial robustness, while still exhibiting good
predictive performance in IID datasets.

5.1 Dataset Refinement

Dataset refinement falls into the pre-processing mit-
igation family, with the aim of alleviating biases
in the training datasets (Wu et al., 2022). First,
when constructing new datasets, crowd workers
will receive additional instructions to discourage
the use of words that are highly indicative of an-
notation artifacts (Han et al., 2020a). Second, de-
biased datasets can also be developed by filtering
out bias in existing data. For example, adversar-
ial filtering is used to build a large-scale data set
for the NLI task to reduce annotation artifacts that
can be easily detected by a committee of strong
baseline methods (Zellers et al., 2018). As a re-
sult, models trained on this dataset have to learn
more generalizable features and rely on common
sense reasoning to succeed. Third, we can also
reorganize the train and test split, so that the bias
distribution in the test set is different from that in
the training set (Agrawal et al., 2018). Lastly, vari-
ous kinds of data augmentation methods have been
proposed. Representative examples include coun-
terfactual data augmentation (Kaushik et al., 2020),
mixup data augmentation (Si et al., 2021), syntac-
tically informative example augmentation by ap-
plying syntactic transformations to sentences (Min
et al., 2020), etc.

5.2 Adversarial Training

Adversarial training aims to learn better represen-
tations that do not contain information about ar-
tifacts or bias in the data. It is typically imple-



mented in two ways in the NLP domain (Stacey
et al., 2020; Rashid et al., 2021). First, the task
classifier and adversarial classifier jointly share the
same encoder (Stacey et al., 2020). The goal of the
adversarial classifier is to provide the correct pre-
dictions for the artifacts in the training data. Then
the encoder and task classifier can be trained to
optimize the task objective while reducing the per-
formance of the adversarial classifier in predicting
artifacts. Second, adversarial examples are gener-
ated to maximize a loss function, and the model is
trained to minimize the loss function. For exam-
ple, the generator based on the masked language
model is used to perturb the text to generate adver-
sarial samples (Rashid et al., 2021). Despite the
difference, both approaches leverage the MinMax
formulation during the debiasing process.

5.3 Explanation Regularization

This category aims to regularize model training us-
ing prior knowledge established by humans (Liu
and Avci, 2019; Han and Tsvetkov, 2021). Specif-
ically, it is achieved by regularizing the feature
attribution explanations with rationale annotations
created by domain experts, to enforce the model to
make the right predictions for the right reasons (Liu
and Avci, 2019). These systems are trained to ex-
plicitly encourage the network to focus on features
in the input that humans have annotated as impor-
tant and suppress the models’ attention to superfi-
cial patterns. For the NLI task, natural language
explanations have been used to supervise the mod-
els, to encourage the model to pay more attention
to the words present in the explanations (Stacey
et al., 2022). It has significantly improved the mod-
els’ OOD generalization performance. Note that
this type of method can only be used when prior
knowledge is known in advance about shortcuts.

5.4 Product-of-Expert (PoE)

The goal is to train a debiased model by training
it as an ensemble with a bias-only model (Clark
et al., 2019; He et al., 2019; Sanh et al., 2021).
This paradigm usually contains two stages. In
the first stage, a bias-only model is explicitly
trained to capture the bias of the data set, e.g.
the hypothesis-only bias for the NLI task. Dur-
ing the second stage, the debiased model will be
trained using cross-entropy loss, by combining
its output with the output of the bias-only model:
p; = softmax (log (p;) + log (b;)) . The parame-
ters of the bias-only model are fixed during this

stage, and only the debiased model parameters are
updated by backpropagation. The goal is to en-
courage the debiased model to utilize orthogonal
information with information from the bias-only
model to make predictions.

5.5 Training Samples Reweighting

The main idea of reweighting is to place higher
training weights on hard training samples, and vice
versa (Schuster et al., 2019; Yaghoobzadeh et al.,
2019; Utama et al., 2020b). It is also called worst-
group loss minimization in some literature (Nam
et al., 2020; Liu et al., 2021a). The underlying
assumption is that improving the performance of
the worst group (hard samples) is beneficial for
model robustness. It is typically achieved through
two-stage training. In the first stage, the weight
indexing model is trained; and in the second stage,
the predictions of the indexing model are used as
weights to adjust the importance of a training in-
stance. Both soft weights (Utama et al., 2020b)
and hard weights (Liu et al., 2021a) could be used
in the second stage. Another representative exam-
ple is focal loss (Lin et al., 2017), which is based
on a regularizer to assign higher weights to hard
samples bearing less confident predictions.

5.6 Confidence Regularization

This mitigation scheme regularizes confidence in
the model output, with the aim of encouraging the
debiased model to give a higher uncertainty (lower
confidence) for these biased samples. It is based
on the observation that models tend to make over-
confident predictions on biased examples (Utama
et al., 2020a). This relies on the training of a bias-
only model to quantify the degree of bias of each
training sample. The debiasing process is typically
achieved through the knowledge distillation frame-
work. In the first stage, the biased teacher model
is trained using standard ERM loss, and the bias
degree obtained from the bias-only model will be
used to rescale the output distribution of the teacher
model. In the second stage, the smoothed confi-
dence values of the teacher model can be used to
guide the training of the debiased model.

5.7 Partitioning Data into Environments

This line of methods follows the principle of in-
variant risk minimization (Arjovsky et al., 2019),
which encourages models to learn invariants in
multiple environments. For example, training data
has been partitioned into several non-1ID subsets



(i.e., training environments), where spurious corre-
lations vary across environments and reliable ones
remain stable across environments (Teney et al.,
2020). The training scheme is designed to encour-
age the model to rely on stable correlations and
suppress spurious correlations. Another work pro-
poses an inter-environment matching objective by
maximizing the inner product between gradients
from different environments, with the goal of in-
creasing model generalization (Shi et al., 2022).

5.8 Contrastive Learning

Contrastive learning can be used to guide the train-
ing of representations. The goal is to construct the
instance discrimination task to guide the model to
capture the robust and predictive features, while
suppressing the undesirable non-robust features.
The instance discrimination task should be care-
fully designed; otherwise, it is possible to suppress
robust predictive features (Robinson et al., 2021).

6 Future Research Directions

Despite the progress introduced in the previous
three sections, there are still many research chal-
lenges. In this section, we discuss the challenges
that deserve further research from the community.

6.1 More Inductive Bias

It is suggested to introduce more inductive bias
into the model architecture to improve robust-
ness and generalization beyond IID benchmark
datasets (Marasovi¢, 2018). Recently, some work
has begun to induce certain kinds of linguistic struc-
ture in neural architectures. For example, Table-
Former is proposed for robust table understand-
ing (Yang et al., 2022). It proposes a robust and
structurally aware table-text encoding architecture,
where tabular structural biases are incorporated
through learnable attention biases. Note that induc-
tive biases are highly task-dependent and should
be carefully designed for each specific task to ac-
commodate its unique characteristic.

6.2 Better Pre-training Objectives

It is desirable to invest more effort in designing bet-
ter pre-training objectives to improve model robust-
ness. Recent studies indicate that choosing a better
pre-trained model could bring much better general-
ization performance than robust learning methods
as introduced in Section 5. For example, RoOBERTa-
base with a standard fine-tuning loss could even

outperform the BERT-base with robust learning ob-
jectives in terms of generalization performance on
the HANS test set (Bhargava et al., 2021). This
indicates the essential role of pre-training in NLU
models’ generalization performance and calls for
more efforts from the community to improve the
pre-trained language models.

6.3 Introducing More Domain Knowledge

NLU tasks might contain various types of bias,
which are not fully known even by domain experts.
This is distinct from the literature that works with
the toy task (e.g., Colored MNIST (Arjovsky et al.,
2019)), which typically contains a single type of
bias and the bias is fully known. As such, most
existing mitigation methods for NLU tasks rely on
heuristics of human prior knowledge. Some ex-
amples include: i) weak models are more prone
to capture biases, ii) non-robust models tend to
give overconfident predictions for easy samples,
etc. Unfortunately, this prior knowledge can only
identify a limited number of biases existing in the
data. Although it is possible to alleviate the us-
age of some identified shortcuts, models could use
other shortcuts for prediction. This could explain
why existing mitigation methods have only a lim-
ited improvement in generalization. Therefore, it
is recommended to incorporate more human-like
common sense knowledge in model training.

6.4 Analyzing Debiased Models

It is commonly believed that debiased algorithms
achieve better generalization since they can learn
more robust features, compared to biased models
that rely mainly on non-robust features. Neverthe-
less, this is not always the case for debiased algo-
rithms. A recent work uses explainability as a de-
bugging tool to analyze debiased models (Mendel-
son and Belinkov, 2021). The analysis indicates
that the debiased models actually encode more bi-
ases in their inner representations. It is speculated
that the improved performance on the OOD data
comes from the refined classification head. More
research is needed to investigate whether the de-
biased model has captured more robust features
and what is the source of their improved general-
ization (Rosenfeld et al., 2022).

6.5 More Challenging Evaluation Datasets

It is encouraging to see that some benchmark
datasets have emerged to evaluate adversarial
and OOD robustness. For example, adversarial



GLUE is proposed for adversarial robustness eval-
uation, which contains 14 adversarial attack meth-
ods (Wang et al., 2021a). Checklist (Ribeiro et al.,
2020) and Robustness Gym (Goel et al., 2021) can
be used to evaluate the robustness of LLMs. De-
spite these current advances, it is necessary to fur-
ther curate challenging evaluation datasets: 1) cov-
ering a wider range of NLU tasks, such as reading
comprehension, and 2) covering a wider range of
biases, such as those listed in Section 2.1.

7 Connections to Other Directions

In this section, we provide a further discussion
of the connection of shortcut learning and robust
learning with other closely relevant directions.

7.1 Domain Adaptation & Generalization

The robust learning approaches that we have dis-
cussed in Section 5 are closely relevant to domain
adaptation and domain generalization. The three
directions share the similarity that the training and
test sets are not from the same distribution, i.e.,
there is a certain distribution shift. However, the
objective of robust learning is distinct from domain
adaptation, which aims to generalize to a specific
target domain (Teney et al., 2020). In contrast, ro-
bust learning is closer to domain generalization,
where both areas have the goal of generalizing over
arange of unknown conditions (Wang et al., 2021b).
It is also worth noting that various types of dataset
distribution shift could cause domain generaliza-
tion problem (Wiles et al., 2022), where spurious
correlation is only one of them.

7.2 Long-Tailed Classification

Long-tailed classification addresses the problem of
long-tailed distributed data, where the head class
contains abundant training samples and the tail
class has only a few training samples (Li et al.,
2022a). Shortcut learning can be treated as a spe-
cial case of long-tailed classification, where easy
samples correspond to the head class and hard sam-
ples represent the tail class. Some of the robust
learning solutions (e.g., reweighting) in Section 5
share a philosophy similar to that of approaches to
the long-tailed classification problem. Leveraging
ideas from approaches to long-tailed classification
could further boost the robustness of LLMs.

7.3 Algorithmic Discrimination

Shortcut learning could also lead to discrimination
and unfairness in deep learning models (Du et al.,

2020). In contrast to the general bias captured
by the models, the spurious patterns here usually
correspond to societal biases in terms of humans
(e.g., racial bias and gender bias). Here, the mod-
els have associated the fairness-sensitive attributes
(e.g., ZIP code and surname) with main prediction
task labels (e.g., mortgage loan rejection). At the in-
ference time, the model would amplify the bias and
show discrimination towards certain demographic
groups, e.g., African Americans and females.

7.4 Backdoor Attack

The previous sections focus on discussing the set-
ting in which LLMs have unintentionally captured
undesirable shortcuts. However, the adversary can
intentionally insert shortcuts into LLMs, which
could be a potential security threat to the deployed
LLMs (Yu et al., 2021). This is termed the back-
door attack (or poisoning/Trojan attack). Back-
door attackers insert human-crafted easy patterns
that serve as shortcuts during the model training
process, explicitly encouraging the model to learn
shortcuts (Kurita et al., 2020). Representative ex-
amples include modifying the style of text (Qi et al.,
2021), adding shortcut unigrams such as double
quotation marks (Du et al., 2021a), etc.

7.5 Watermarking

Different from the malicious usage of shortcut
learning as the backdoor attack, shortcut learning
can also be used for benign purposes. In particular,
trigger patterns can be inserted as watermarks by
model owners during the training phase to protect
the IP of companies (Tang et al., 2020). When
LLMs are used by unauthorized users, shortcuts in
the format of trigger patterns can be used to claim
ownership of the models.

8 Conclusions

In this article, we provide a comprehensive analy-
sis of the LLM’s shortcut learning issue for NLU
tasks. Our analysis indicates that shortcut learning
can be attributed to the skewed dataset, the model
architecture, and the model learning dynamics. We
further summarize the mitigation solutions that can
be used to alleviate shortcut learning and increase
the robustness of LLMs. Furthermore, we provide
discussions of directions that deserve further ef-
fort from the research community and also point
out the connections of shortcut learning and robust
learning with other relevant directions.



Limitations

In this work, we focus primarily on LLMs with the
pre-training and fine-tuning paradigm. We cover
few literature that address the robustness issue for
other models and training paradigms, including
the fully supervised paradigm with shallow models
such as LSTM and prompt-based learning with
language models (Liu et al., 2021b). Additionally,
we focus primarily on a few NLU tasks, such as
NLI, QA, and reading comprehension. In contrast,
many other types of NLP tasks are not covered in
this work, such as machine translation. The reason
is that these NLU tasks typically require high-level
semantic understanding and reasoning, and thus
suffer the most from the shortcut learning issue.
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A Further Discussions

In this section, we provide a further discussion of
the robustness challenges of LLMs.

A.1 Other Training Paradigms

In this survey, we focus on characterizing the short-
cut learning problem of the pre-training and fine-
tuning training paradigm. Other training paradigms
also suffer from the shortcut learning problem.
For example, recent studies indicate that the few-
shot prompt-based training paradigm also suffers
from the shortcut learning problem (Utama et al.,
2021). The main reason is that most existing train-
ing paradigms belong to the general data-driven
training paradigm, which naturally tends to rely on
dataset artifacts as shortcuts for prediction.

A.2 Other NLU-relevant Tasks

Beyond NLU tasks, other NLU-relevant tasks in
real-world applications also suffer from the low
robustness issue (Li et al., 2022b). Take the vi-
sual commonsense reasoning task for example, the
models exploit the co-occurring text between input
(question) and output (answer options) to make pre-
dictions, rather than performing the desired visual
reasoning task (Ye and Kovashka, 2021). This has
also been observed in other vision language tasks,
such as VQA (Niu et al., 2021). The similarity for
these tasks is that successful predictions rely on
human-like reasoning and sometimes might also
rely on world knowledge. Therefore, we need to
carefully interpret the results, especially when it is
claimed that models with pure data-driven training
outperform the performance of humans.

A.3 IID and Robustness Trade-off?

Another open question is about the connection be-
tween IID performance and OOD robustness per-
formance. To the best of our knowledge, there are
no consistent observations. For example, there is
a linear correlation between IID performance and
OOD generalization for different types of models
introduced in Section 4.2. On the contrary, most ro-
bust learning methods introduced in Section 5 will
sacrifice IID performance, although some of them
could preserve IID performance. It deserves further
research on the conditions under which the trade-
off would occur. These insights could help the
research community design robust learning frame-
works that can simultaneously improve OOD and
IID performance.



