
Shortcut Learning of Large Language Models in Natural
Language Understanding

Mengnan Du
New Jersey Institute of Technology

Newark, NJ, USA
mengnan.du@njit.edu

Fengxiang He
University of Edinburgh

Edinburgh, UK
F.He@ed.ac.uk

Na Zou
Texas A&M University

College Station, TX, USA
nzou1@tamu.edu

Dacheng Tao
The University of Sydney

Sydney, Australia
dacheng.tao@gmail.com

Xia Hu
Rice University

Houston, TX, USA
xia.hu@rice.edu

ABSTRACT
Large language models (LLMs) have achieved state-of-the-art perfor-
mance on a series of natural language understanding tasks. However,
these LLMs might rely on dataset bias and artifacts as shortcuts for
prediction. This has significantly affected their generalizability and
adversarial robustness. In this paper, we provide a review of recent
developments that address the shortcut learning and robustness chal-
lenge of LLMs. We first introduce the concepts of shortcut learning
of language models. We then introduce methods to identify shortcut
learning behavior in language models, characterize the reasons for
shortcut learning, as well as introduce mitigation solutions. Finally,
we discuss key research challenges and potential research directions
in order to advance the field of LLMs.

1 INTRODUCTION
Natural language understanding (NLU) is a subfield of artificial
intelligence that requires computer software to comprehend input
in the form of sentences. Representative NLU tasks include nat-
ural language inference (NLI), question answering (QA), reading
comprehension, etc. Furthermore, NLU has a number of real-world
applications, including Amazon Alexa, Siri, and Google Assistant.
The major characteristic of NLU tasks is that they are difficult
and typically require world knowledge and commonsense reason-
ing. Recently, large language models (LLMs), such as BERT [8],
RoBERTa [20], T5 [30], GPT-3 [4], have been reported to achieve
state-of-the-art performance in a series of high-level NLU tasks. The
LLM performance has even been reported to be significantly higher
than human performance. However, the superior performance has
only been observed in the benchmark test data that have the same
distribution as the training set. Recent studies indicate that these
LLMs are not robust and that the models do not remain predictive
when the distribution of inputs changes [9, 24, 47]. Specifically,
these LLMs have low generalization performance when applied to
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out-of-distribution (OOD) test data and are also vulnerable to vari-
ous types of adversarial attack. This leaves us wondering: Why are
these LLMs not robust? Have these LLMs mastered the high-level
semantic understanding and reasoning that we expect of them?

A major reason for the low robustness of LLMs is shortcut learn-
ing. The shortcut learning behavior has also been called other names
in the literature, such as learning bias, superficial correlations, right
for wrong reasons, Clever Hans effect1, etc. The shortcut learning
behavior has been observed for a series of NLU tasks. For example,
recent empirical analysis indicates that the performance of BERT-
like models for the NLI task could be mainly explained by relying
on spurious statistical cues such as unigrams ‘not’, ‘do’, ‘is’ and
bigrams ‘will not’ (see Figure 1 (b)) [13, 24]. Similarly, for the
reading comprehension task, the models rely on the lexical match-
ing of words between the question and the original passage, while
ignoring the designed reading comprehension task [17]. The current
standard approach to training LLM is to use empirical risk min-
imization (ERM) on NLU datasets that typically contain various
types of artifacts and biases. As such, LLMs have learned to rely on
dataset artifacts and biases and capture their spurious correlations
with certain class labels as shortcuts for prediction. The shortcut
learning behavior has significantly affected the robustness of LLMs
(see Figure 1 (a)), thus attracting increasing attention from the NLP
community to address this problem.

In this work, we offer a comprehensive review of the shortcut
learning problem in language models with a focus on medium-sized
LLMs those typically having less than a billion parameters. The
main emphasis is on the prevalent pre-training and fine-tuning par-
adigm utilized in NLU tasks (see Figure 3). We cover the concept
of shortcut learning and robustness challenges in Section 2, detec-
tion approaches in Section 3, characterization of the corresponding
reasons in Section 4, and mitigation approaches in Section 5. We
also provide a further discussion of future research directions and
connections with other directions in Section 6. Beyond the standard
fine-tuning paradigm, in Section 7, we briefly discuss the challenges
of shortcut learning posed by the prompt-based paradigm, especially
regarding the massive language models which possess over a billion
parameters, such as GPT-3 and T5.

1The eponymous horse appeared to be capable of performing simple intellectual tasks,
but actually relied on involuntary cues given by its handler.
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Figure 1: Shortcut learning behavior and its negative impact, taking natural language inference (NLI) task for example. The goal of
NLI is to infer whether the relationship between two branches of input, i.e., premise and hypothesis, is entailment, contradiction, or
neutral. (a) LLMs outperforms human performance for IID benchmark test set, while achieve much lower generalization performance
on OOD test set. (b) A key reason is that LLMs primarily rely on the lexical bias and other kinds of shortcuts for prediction.

2 SHORTCUT LEARNING PHENOMENA
2.1 What is Shortcut Learning?
Features captured by the model can be broadly categorized as useless
features, robust features, and non-robust features (see Figure 2).
Shortcut learning refers to the phenomenon that LLMs (especially
those trained with standard ERM-based method) highly rely on
non-robust features as shortcuts, failing to learn robust features
and capture high-level semantic understanding and reasoning. Non-
robust features do help generalization for development and test sets
that share the same distribution with training data. However, they
cannot generalize to OOD test sets and are vulnerable to adversarial
attacks. Non-robust features are oriented from biases in the training
data and come in different formats. In the following, we introduce
several representative ones.

• Lexical Bias: Some lexical features have a high correlation of co-
occurrence with certain class labels. These lexical features mainly
consist of low-level functional words such as stop words, numbers,
negation words, etc. A typical example is the NLI task, where
LLMs are highly dependent on unintended lexical features to
make predictions [9, 24]. For example, these models tend to give
contradiction predictions whenever there exist negation words in
the input samples, e.g., ‘never’, ‘no’.

• Overlap Bias: It occurs in NLU applications with two branches
of text, e.g., natural language inference, question answering, and
reading comprehension. LLMs use the overlap of features between
the two branches of inputs as spurious correlations as shortcuts.
For example, reading comprehension models use the overlap be-
tween the passage and the question pair for prediction rather than
solving the underlying task [17]. Similarly, question answering
models excel at test sets by relying on the heuristics of question
and context overlap [35].

• Position Bias: The distribution of the answer positions may be
highly skewed in the training set for some applications. The LLMs
would predict answers based on spurious positional cues. Take the
question answering task for example, the answers lie only in the k-
th sentence of each passage [16]. As a result, question answering
models rely on this spurious cue when predicting answers.

• Style Bias: The text style is a kind of pattern that is independent of
semantics. Models have learned to rely on the erroneous text style
as a shortcut rather than capturing the underlying semantics. Ad-
versaries can use this style bias to launch adversarial attacks [29].

2.2 Generalization and Robustness Challenge
The shortcut learning behavior could significantly hurt LLMs’ OOD
generalization as well as adversarial robustness. First, shortcut
learning may result in significant performance degradation for OOD
data. A common assumption is that training and test data are indepen-
dently and identically distributed (IID). When LLMs are deployed in
real-world applications with distribution shifts, this IID assumption
will not hold any longer. These data typically do not contain the
same types of bias and artifacts as the training data.

IID: 𝑷𝑡𝑟𝑎𝑖𝑛 (𝑿 ,𝒀 ) = 𝑷𝑡𝑒𝑠𝑡 (𝑿 ,𝒀 )
OOD: 𝑷𝑡𝑟𝑎𝑖𝑛 (𝑿 ,𝒀 ) ≠ 𝑷𝑡𝑒𝑠𝑡 (𝑿 ,𝒀 ) (1)

Using BERT-base as an example, there is a more than 20% reduc-
tion in accuracy on the OOD test set compared to the accuracy on
the in-distribution test sets for NLU tasks [10]. To some extent,
these models have solved the dataset rather than the underlying task.
Second, shortcut learning produces models that are easily fooled
by adversarial samples, which are generated when small and often
imperceptible human-crafted perturbations are added to the normal
input. One typical example is for the multiple choice reading compre-
hension task [39]. BERT models are attacked by adding distracting
information, resulting in a significant performance drop. Further
analysis indicates that these models are highly driven by superficial
patterns, which inevitably leads to their adversarial vulnerability.

3 SHORTCUT LEARNING DETECTION
In this section, we discuss methods to identify shortcut learning
problems in NLU models.

3.1 Comprehensive Performance Testing
Traditional evaluations employ IID training-test split of data. The
test sets are drawn from the same distribution as the training sets
and thus share the same kind of biases as the training data. Models
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Figure 2: Features can be generally grouped into useless features, robust features, and non-robust features. Non-robust features
indicate various kinds of biases captured by the model, which are not robust in the OOD setting. In contrast, robust features denote
features of high-level semantic understanding that are robust to changes in the input.

that simply rely on memorizing superficial patterns could perform
acceptablely on the IID test set. This type of evaluation has failed to
identify the shortcut learning problem. Therefore, it is desirable to
perform more comprehensive tests beyond the traditional IID testing.

First, the OOD generalization test has been proposed as an alterna-
tive to the IID test. Take the multi-genre natural language inference
(MNLI) task for example, the HANS evaluation set is proposed to
evaluate whether NLI models have syntactic heuristics: the lexical
overlap heuristic, the subsequence heuristic, and the constituent
heuristic [21]. Similarly, for the fact verification task, a symmetric
test set is constructed that shares a philosophy similar to HANS [34].
These OOD tests have revealed dramatic performance degradation
and exposed the shortcut learning problem of state-of-the-art LLMs.

Second, adversarial attacks could also be implemented to test the
robustness of LLMs. For example, adversarial attacks have been
used to reveal statistical bias in machine reading comprehension
models [17]. Besides, the adversarial examples created through
TextFooler [15] are used to test the generalization of common sense
reasoning models [3]. The results indicate that the models have
learned non-robust features and fail to generalize towards the main
tasks associated with the datasets.

Third, randomization ablation methods are proposed to analyze
whether LLMs have used these essential factors to achieve effective
language understanding. For example, word order is a representative
one among these significant factors. Recent ablation results indicate
that word order does not matter for pre-trained language models [40].
In particular, LLMs are pre-trained first on sentences with randomly
shuffled word order and then fine-tuned on various downstream
tasks. The results show that these models still achieve high accuracy.
Similarly, another study [27] has observed that LLMs are insensitive
to word order in a wide set of tasks, including the entire GLUE
benchmark. These experiments indicate that LLMs have ignored
the syntax when performing downstream tasks, and their success
can almost be explained by their ability to model higher-order word
co-occurrence statistics.

3.2 Explainability Analysis
Model explainability is another effective tool that the community
has used to identify the shortcut learning problem. LLMs are usually
considered black boxes, as their decision-making process is opaque
and difficult for humans to understand. This presents challenges in

identifying whether these models make decisions based on justi-
fied reasons or on superficial patterns. Explainability enables us to
diagnose spurious patterns captured by LLMs.

The existing literature mainly employs the explanation in the for-
mat of feature attribution to analyze shortcut learning behavior in
NLU models [9]. Feature attribution is the most representative para-
digm among all explainability-based methods. In particular, for each
token 𝑥𝑖 within a specific input 𝑥 , the feature attribution algorithm
𝜓 will calculate the contribution score𝜓𝑖 , which denotes the contri-
bution score of that token for model prediction. For example, the
Integrated Gradient [43] interpretation method is used to analyze the
model behavior of BERT-based models [9]. It is observed that LLMs
rely on dataset artifacts and biases within the hypothesis sentence
for prediction, including functional words, negation words, etc [9].
This shortcut learning behavior is summarized further using the
long-tailed phenomenon. Specifically, the tokens in the training set
could be modeled using a long-tailed distribution. The LLM models
concentrate mainly on information on the head of the distribution,
which typically corresponds to non-generalizable shortcut tokens.
In contrast, the tail of the distribution is poorly learned, although it
contains abundant information for an NLU task.

Beyond feature attribution, other types of explainability meth-
ods have also been used to analyze shortcut learning behaviors. For
example, instance attribution methods have been used to explain
model prediction by identifying influential training data, which can
be used to explain decision making logic for the current sample of
interest [14]. Empirical analysis indicates that the most influential
training data share similar artifacts, e.g., high overlap between the
premise and hypothesis for the NLI task. Furthermore, hybrid meth-
ods that combine feature attribution and instance attribution have
also been used to identify artifacts in the data [26]. The resulting
explanations have provided a more comprehensive perspective on
the shortcut learning behavior of LLMs.

4 ORIGINS OF SHORTCUT LEARNING
The problem of learning shortcuts in LLM models for NLU tasks
is a result of multiple factors present in the training pipeline (see
Figure 3). In this section, we will delve into these reasons and give
particular emphasis to three key elements: the training datasets, the
LLM model, and the fine-tuning training procedure.
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Figure 3: The pre-training then fine-tuning training paradigm. Shortcut learning can be attributed to different factors in this pipeline,
including pre-trained language models, fine-tuning process, and downstream tasks.

4.1 Skewed Training Dataset
From a data standpoint, the NLU models’ shortcut learning can be
traced back to the annotation and collection artifacts of the training
data to a large extent. Here, the training data include both the pre-
training datasets as well as the downstream datasets (see Figure 3).
Training sets are typically built through the crowd-sourcing process,
which has the advantage of being low-cost and scalable. However,
the crowd-sourcing process results in collection artifacts, where the
training data are imbalanced with respect to features and class labels.
Furthermore, when crowd workers author parts of the samples, they
produce certain patterns of artifacts, i.e., annotation artifacts [13, 33].
Taking NLI as an example, the average sentence length of the hy-
pothesis branch is shorter for the entailment category compared to
the neutral category [13]. This suggests that crowd workers tend
to remove words from the premise to create a hypothesis for the
entailment category, leading to the overlap bias in the training data.
Models trained on the skewed datasets will capture these artifacts
and even amplify them during inference time.

4.2 LLMs Models
The robustness of NLU models is highly relevant to the pre-finetuned
language models. In particular, there are two key factors: model sizes
(measured by the number of parameters) and pre-training objectives.

First, models with the same kind of architectures and pre-training
objective but with different sizes could have significantly different
generalization ability. It is shown that increasing the size of the
model could lead to an increase in the representation power and
generalization ability. From the empirical perspective, comparisons
have been made between LLMs of different sizes but with the same
architecture, e.g., BERT-base with BERT-large, RoBERTa-base with
RoBERTa-large [2, 46]. The results show that the larger versions
generalize consistently better than the base versions, with a rela-
tively smaller accuracy gap between the OOD and IID test data.
Smaller models have fewer parameters than larger models and have
a smaller model capacity. Therefore, smaller models are more prone
to capture spurious patterns and are more dependent on data artifacts
for prediction. Another work [10] studies the impact of model com-
pression on the generalizability of LLMs and finds that compressed
LLMs are significantly less robust compared to their uncompressed
counterparts. Compressed models with knowledge distillation have
also been shown to be more vulnerable to adversarial attacks. From
a theoretical perspective, a recent analysis supports that there is a
trade-off between the size of a model and its robustness, where large
models tend to be more robust than smaller ones [5].

Second, LLMs with similar model sizes but with different pre-
training objectives also differ in the generalization ability. Here, we
consider three kinds of LLMs: BERT, ELECTRA, and RoBERTa.

BERT is trained with masked language modeling and next-sentence
prediction. RoBERTa removes the next-sentence prediction from
BERT and uses dynamic masking. ELECTRA is trained to distin-
guish between real input tokens and fake input tokens generated
by another network. Empirical analysis shows that these three mod-
els have significantly different levels of robustness [28]. For the
Adversarial NLI (ANLI) dataset, it is shown that ELECTRA and
RoBERTa have significantly better performance than BERT, for both
the base and the large versions. Similarly, another study has shown
that RoBERTa-base outperforms BERT-base around 20% in terms of
accuracy on the HANS test set [2]. Because different architectures
have distinct object functions during the pre-training stage, different
inductive biases may be encoded by the models. This could possibly
explain their differences in generalizability.

4.3 Model Fine-tuning Process
The learning dynamics could reveal what knowledge has been learned
during the course of model training. There are some observations.
First, standard training procedures have a bias toward learning sim-
ple features, which we can refer to as the simplicity bias. The models
are based mainly on the simplest features and remain invariant to
complex predictive features. Moreover, it has been observed that
the models give overconfident predictions for easy samples and low-
confidence predictions for hard samples. Second, models tend to
learn non-robust and easy-to-learn features at the early stage of train-
ing. For example, reading comprehension models have learned the
shortcut in the first few training iterations, which has influenced fur-
ther exploration of the models for more robust features [17]. Third,
it has been experimentally validated that longer fine-tuning could
lead to better generalization. Specifically, a larger number of train-
ing epochs will dramatically improve the generalizability of LLMs
in NLU tasks [46]. The preference for non-robust features can be
explained from the following perspective. The present LLM training
methods can be considered as data-driven, corpus-based, statistical,
and machine learning approaches. It is postulated that while this
data-driven paradigm may prove effective in certain NLP tasks, it
falls short in relevance to the challenging NLU tasks that necessitate
a deeper understanding of natural language.

5 MITIGATION OF SHORTCUT LEARNING
In this section, we introduce approaches that alleviate the problem of
shortcut learning. The ultimate goal is to improve OOD generaliza-
tion and adversarial robustness while still exhibiting good predictive
performance in IID datasets. These methods are motivated mainly
by the insights obtained in the last section. In particular, Section 5.1
introduces methods based on dataset refinement, and Section 5.2
focuses on model-centric mitigation approaches.
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5.1 Data-Centric Mitigation Approaches
Dataset Refinement. Dataset refinement falls into the pre-processing
mitigation family, with the aim of alleviating biases in the training
datasets. First, when constructing new datasets, crowd workers will
receive additional instructions to discourage the use of words that are
highly indicative of annotation artifacts. Second, debiased datasets
can also be developed by filtering out bias in existing data. For exam-
ple, adversarial filtering is used to build a large-scale data set for the
NLI task to reduce annotation artifacts that can be easily detected
by a committee of strong baseline methods [54]. As a result, models
trained on this dataset have to learn more generalizable features and
rely on common sense reasoning to succeed. Third, we can also
reorganize the train and test split, so that the bias distribution in
the test set is different from that in the training set. Lastly, various
types of data augmentation methods have been proposed. Represen-
tative examples include counterfactual data augmentation, mixup
data augmentation, syntactically informative example augmentation
by applying syntactic transformations to sentences, etc.

However, a drawback of this approach is that refining the dataset
can only mitigate a limited number of recognized biases. The refined
training set may not be completely free of biases and may still en-
compass statistical biases that are challenging for humans to identify.
Thus, this could still negatively impact the model’s performance.

Training Samples Reweighting. The main idea of reweighting is
to place higher training weights on hard training samples, and vice
versa [34, 47]. It is also called worst-group loss minimization in
some literature. The underlying assumption is that improving the
performance of the worst group (hard samples) is beneficial to the
robustness of the model. It is typically achieved through two-stage
training. In the first stage, the weight indexing model is trained; and
in the second stage, the predictions of the indexing model are used
as weights to adjust the importance of a training instance. Both soft
weights [47] and hard weights could be used in the second stage.
Another representative example is focal loss, which is based on a
regularizer to assign higher weights to hard samples that have less
confident predictions.

Partitioning Data into Environments. This line of methods follows
the principle of invariant risk minimization [1], which encourages
models to learn invariants in multiple environments. For example,
training data has been partitioned into several non-IID subsets (i.e.,
training environments), where spurious correlations vary across envi-
ronments and reliable ones remain stable across environments [45].
The training scheme is designed to encourage the model to rely on
stable correlations and suppress spurious correlations. Another work
proposes an inter-environment matching objective by maximizing
the inner product between gradients from different environments,
with the goal of increasing model generalization [37].

5.2 Model-Centric Mitigation Methods
In this section, we introduce model-centric mitigation methods,
which can be named robust learning methods. These methods
typically augment the traditional ERM-based training paradigm
with different degrees of prior knowledge, explicitly or implicitly
suppressing the model from capturing non-robust features. Some

mitigation methods require that the shortcuts be known a priori,
while others assume that the shortcuts are unknown.

Adversarial Training. This aims to learn better representations that
do not contain information about artifacts or bias in the data. It is
typically implemented in two ways in the NLP domain [31, 42].
First, the task classifier and adversarial classifier jointly share the
same encoder [42]. The goal of the adversarial classifier is to provide
the correct predictions for the artifacts in the training data. Then
the encoder and task classifier can be trained to optimize the task
objective while reducing the performance of the adversarial classifier
in predicting artifacts. Second, adversarial examples are generated
to maximize a loss function, and the model is trained to minimize
the loss function. For example, the generator based on the masked
language model is used to perturb the text to generate adversarial
samples [31]. Despite the difference, both methods leverage the
MinMax formulation during the debiasing process.

Explanation Regularization. This category aims to regularize model
training using prior knowledge established by humans [19]. Specif-
ically, it is achieved by regularizing the feature attribution expla-
nations with rationale annotations created by domain experts, to
enforce the model to make the right predictions for the right rea-
sons [19]. These systems are trained to explicitly encourage the
network to focus on features in the input that humans have anno-
tated as important and suppress the models’ attention to superficial
patterns. For the NLI task, natural language explanations have been
used to supervise the models, to encourage the model to pay more
attention to the words present in the explanations [41]. It has signifi-
cantly improved the models’ OOD generalization performance. Note
that this type of method can only be used when prior knowledge is
known in advance about shortcuts.

Product-of-Expert (PoE). The goal is to train a debiased model
by training it as an ensemble with a bias-only model [7]. This
paradigm usually contains two stages. In the first stage, a bias-
only model is explicitly trained to capture the bias of the data set,
e.g. the hypothesis-only bias for the NLI task. During the second
stage, the debiased model will be trained using cross-entropy loss,
by combining its output with the output of the bias-only model:
𝑝𝑖 = softmax (log (𝑝𝑖 ) + log (𝑏𝑖 )) . The parameters of the bias-only
model are fixed during this stage, and only the debiased model pa-
rameters are updated by backpropagation. The goal is to encourage
the debiased model to utilize orthogonal information with informa-
tion from the bias-only model to make predictions.

Confidence Regularization. This mitigation scheme regularizes
confidence in the model output, with the aim of encouraging the
debiased model to give a higher uncertainty (lower confidence) for
these biased samples. It is based on the observation that models
tend to make overconfident predictions on biased examples. This
relies on the training of a bias-only model to quantify the degree
of bias of each training sample. The debiasing process is typically
achieved through the knowledge distillation framework. In the first
stage, the biased teacher model is trained using standard ERM loss,
and the bias degree obtained from the bias-only model will be used
to rescale the output distribution of the teacher model. In the second
stage, the smoothed confidence values of the teacher model can be
used to guide the training of the debiased model [9].
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Figure 4: Combining more human knowledge to different stages of the pipeline. Specifically, knowledge can be combined to the
architecture of model, model training process (both pre-training and fine-tuning), and model evaluation process.

Contrastive Learning. Contrastive learning can be used to guide
the training of representations. The goal is to construct the instance
discrimination task to guide the model to capture the robust and
predictive features, while suppressing the undesirable non-robust fea-
tures. The instance discrimination task should be carefully designed;
otherwise, it is possible to suppress robust predictive features [32].
A representative work presents a framework for mitigating spurious
correlations using contrastive learning [6]. The method synthesizes
a pair of factual and counterfactual inputs from the original text by
masking identified causal and non-causal terms respectively. The
model learns to associate the causal term with task labels by com-
paring the original text with its counterfactual counterpart, while
learning to ignore non-causal features by contrasting with the factual
pair. The framework leads to models that are less dependent on non-
robust features and exhibit improved generalization performance.

5.3 IID and Robustness Trade-off?
Another open question is about the connection between IID per-
formance and OOD robustness performance. To the best of our
knowledge, there are no consistent observations. For example, there
is a linear correlation between IID performance and OOD general-
ization for different types of models introduced in Section 4.2. On
the contrary, most robust learning methods introduced in Section 5.2
will sacrifice IID performance, although some of them could pre-
serve IID performance. It deserves further research on the conditions
under which the trade-off would occur. These insights could help
the research community design robust learning frameworks that can
simultaneously improve OOD and IID performance.

6 FUTURE RESEARCH DIRECTIONS
Despite the progress described in the previous sections, there are still
numerous research challenges. In this section, we discuss potential
research directions that could be pursued by the community.

6.1 Introducing More Domain Knowledge
Current standard of LLM training is data-driven. This is problematic
because the resulting models essentially perform low-level pattern
recognition. It may be useful for low-level NLP tasks like named-
entity recognition (NER), but it is nearly impossible to tackle the
more difficult natural language understanding tasks. As a result,
it is preferable to combine the data-driven scheme with domain

knowledge by incorporating knowledge at various stages of training.
Furthermore, more knowledge should be applied to the design of the
model architecture and the model evaluation (see Figure 4).

Inductive Bias to LLMs Models. It is suggested to introduce more
inductive bias into the model architecture to improve robustness and
generalization beyond IID benchmark datasets. Recently, some work
has begun to induce certain kinds of linguistic structure in neural
architectures. For example, TableFormer is proposed for robust table
understanding [53]. It proposes a structurally aware table-text en-
coding architecture, where tabular structural biases are incorporated
through learnable attention biases. Although introducing linguistic-
oriented biases to the model architectures might not result in the
best performance for benchmark datasets, it is essential to improve
generalization beyond IID benchmarks. Note that inductive biases
are highly task-dependent and should be carefully designed for each
specific task to accommodate its unique characteristic.

Better Pre-training Objectives. The pre-training objective also
plays a crucial role in determining the OOD robustness of fine-tuned
language models. As an example, recent studies have shown that pre-
trained BERT embeddings suffer from strong anisotropy, meaning
the average cosine similarity is significantly higher than zero and
word vectors cluster in narrow cones in the vector space [12, 18].
This leads to word representations having a high similarity to un-
related words, impacting their expressive power and accuracy in
downstream tasks. It is desirable to invest more effort in designing
better pre-training objectives to improve model robustness. Recent
studies indicate that choosing a better pre-trained model could bring
much better generalization performance than robust learning meth-
ods as introduced in Section 5. For example, RoBERTa-base with a
standard fine-tuning loss could even outperform the BERT-base with
robust learning objectives in terms of generalization performance on
the HANS test set [2]. This highlights the importance of pre-training
in NLU model generalization performance and calls for increased
community efforts to improve pre-trained language models.

Better Fine-tuning Approaches. NLU tasks may contain various
types of bias, which are not fully known even by domain experts.
This is distinct from the literature that works with the toy task (e.g.,
Colored MNIST [1]), which typically contains a single type of bias
and the bias is fully known. As a result, the majority of existing
mitigation methods for NLU tasks rely on human prior knowledge
heuristics. Some examples include: i) weak models are more prone to
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capture biases, ii) non-robust models tend to give overconfident pre-
dictions for easy samples, etc. Unfortunately, this prior knowledge
can only identify a limited number of biases in the data. Although
it is possible to reduce the use of some identified shortcuts, models
may still use other shortcuts for prediction. This could explain why
existing mitigation methods only provide a limited improvement
in generalization. As a result, it is suggested to incorporate more
human-like common sense knowledge into the model training.

Curating Challenging Evaluation Datasets. It is encouraging to
see that some benchmark datasets for adversarial and OOD robust-
ness have emerged. For example, adversarial GLUE is proposed
for adversarial robustness evaluation, which contains 14 adversarial
attack methods [50]. Despite these recent advances, it is necessary
to continue curating difficult evaluation datasets that cover a wider
range of NLU tasks, such as reading comprehension, and that cover
a wider range of biases, such as those listed in Section 2.1.

6.2 Revisiting The Mitigation Approaches
Existing mitigation methods have typically had limited mitigation
performance. For example, for the MNLI task, the accuracy for miti-
gated models with BERT-base as the backbone is consistently lower
than 70% for the HANS test set [47]. Note that HANS is a balanced
binary test set, where 50% is the accuracy of the random guess.
The improvement in performance falls far short of our expectations.
This brings up the following questions: 1) What have the mitigation
algorithms accomplished, and 2) how can mitigation performance
be improved further?

Debiased algorithms are thought to achieve better generalization
because they can learn more robust features than biased models that
rely primarily on non-robust features. However, this is not always
the case with debiased algorithms. A recent work uses explainability
as a debugging tool to analyze debiased models [22]. The analysis
indicates that the debiased models actually encode more biases
in their inner representations. It is speculated that the improved
performance on the OOD data comes from the refined classification
head. More research is needed to investigate whether the debiased
model has captured more robust features and what is the source
of their improved generalization. This also suggests an interesting
research direction by only updating the biased classification head, as
updating the entire model is typically difficult and time consuming.

6.3 In-depth Theoretical Understanding
In addition to the current empirical research, there is also a growing
trend of preliminary theoretical research aimed at uncovering the
shortcut learning behavior of DNN models [23, 36, 49]. For instance,
using one-hidden-layer neural networks as the base model, one theo-
retical work uncovers that neural networks tend to exclusively rely
on simplest and non-robust features, while remain invariant to other
useful but more complex features [36]. This type of simplicity bias
is one of the primary causes of low OOD generalization and adver-
sarial vulnerability. Another theoretical study has investigated the
reason behind superficial correlations from the optimization perspec-
tive [49]. By using a depth-2 ReLU network as an example, the study
proposed the Gradient Starvation phenomenon, which states that the
gradient descent optimization methods tend to learn non-robust net-
works while slowing down the learning of robust and task-relevant

features. Although these existing works provide insights into the
reason of shortcut learning of shallow neural networks, there is still
a lack of a solid theoretical understanding of why LLMs learn short-
cuts. In the future, further research is needed to fully explain this
tendency in the context of LLMs.

6.4 Taking Inspiration from Other Directions
In addition, we can take inspiration from other relevant directions to
address the shortcut learning issue of LLMs.

Domain Adaptation & Generalization. The robust learning ap-
proaches that we have discussed in Section 5 are closely relevant to
domain adaptation and domain generalization. The three directions
share the similarity that the training and test sets are not from the
same distribution, i.e., there is a certain distribution shift. However,
the objective of robust learning is distinct from domain adaptation,
which aims to generalize to a specific target domain. In contrast,
robust learning is closer to domain generalization, where both areas
have the goal of generalizing over a range of unknown conditions.
The NLP community can leverage the findings from the domain gen-
eralization area to design more robust learning methods for LLMs.

Long-Tailed Classification. Long-tailed classification addresses
the issue of long-tailed distributed data, in which the head class
has a large number of training samples while the tail class has few.
Shortcut learning can be treated as a special case of long-tailed
classification, where easy samples correspond to the head class and
hard samples represent the tail class. Some of the robust learning
solutions (e.g., reweighting) in Section 5 share a similar philosophy
with approaches to the long-tailed classification problem. Leveraging
ideas from approaches to long-tailed classification could improve
the robustness of LLMs even further.

Algorithmic Discrimination. Shortcut learning could also lead to
discrimination and unfairness in deep learning models. In contrast to
the general bias captured by the models, the spurious patterns here
usually correspond to societal biases in terms of humans (e.g., racial
bias and gender bias) [11]. Here, the models have associated the
fairness-sensitive attributes (e.g., ZIP code and surname) with main
prediction task labels (e.g., mortgage loan rejection). At the inference
time, the model would amplify the bias and show discrimination
towards certain demographic groups, e.g., African Americans.

6.5 Motivating Other Directions
We can also take advantage of the insights discussed above to moti-
vate the development of other directions.

Backdoor Attack. The previous sections focus on discussing the
setting in which LLMs have unintentionally captured undesirable
shortcuts. However, the adversary can intentionally insert shortcuts
into LLMs, which could be a potential security threat to the deployed
LLMs. This is termed the backdoor attack (or poisoning/Trojan
attack) [44]. Backdoor attackers insert human-crafted easy patterns
that serve as shortcuts during the model training process, explicitly
encouraging the model to learn shortcuts. Representative examples
include modifying the style of text, adding shortcut unigrams such
as double quotation marks, etc.



Conference’17, July 2017, Washington, DC, USA Mengnan Du, Fengxiang He, Na Zou, Dacheng Tao, and Xia Hu

Watermarking. Unlike malicious use of shortcut learning as the
backdoor attack, shortcut learning can also be used for benign pur-
poses. In particular, trigger patterns can be inserted as watermarks
by model owners during the training phase to protect the IP of com-
panies. When LLMs are used by unauthorized users, shortcuts in the
format of trigger patterns can be used by the stakeholders to claim
ownership of the models.

7 PROMPT-BASED PARADIGM
In previous sections, we have explored the characterization of the
shortcut learning problem in the pre-training and fine-tuning training
paradigm of medium-sized language models (typically with less than
a billion parameters). With the recent emergence of huge-sized lan-
guage models (with billions of parameters) such as GPT-3 and T5,
the prompt-based paradigm has evolved into a new training para-
digm with distinct formats from the standard fine-tuning paradigm.
Consider the example of prompt for GPT-3. Using natural language
instructions and/or demonstration of a few tasks, the LLM can gen-
erate the desired output without the need for gradient updates or
fine-tuning. In this section, we examine the robustness of prompt-
based methods and then compare them with the traditional standard
fine-tuning approach.

7.1 Robustness of Prompt-based Methods
There are two types of prompt-based paradigms: 1) prompt-based
fine-tuning and 2) prompting without fine-tuning. Prompt-based fine-
tuning aims to enable medium-sized language models like BERT or
RoBERTa to be few-shot learners, and this still requires optimizing
the model’s parameters. On the other hand, prompting without fine-
tuning is meant for huge-sized language models like GPT-3, where
the parameters are fixed and the model is applied to various tasks
using different prompts, either discrete or soft. In the following
discussion, we will discuss the shortcut learning issue in both types
of prompt-based paradigms.

Prompt-based Fine-tuning. Preliminary research has been con-
ducted to examine the shortcut learning challenge in the few-shot
prompt-based fine-tuning paradigm [48]. This preliminary study in-
vestigated the RoBERTa-large model, which comprises 355 million
parameters. This work reveals the following insights: (i) zero-shot
prompt-based models exhibit a higher level of robustness against
the lexical overlap heuristic during inference, as evidenced by their
strong performance on relevant challenge datasets. (ii) conversely,
prompt-based finetuned models tend to adopt the spurious heuristic
as they learn from larger amounts of labeled data, which is reflected
by poor performance on OOD datasets. This indicates that prompt-
based fine-tuning negatively impacts the robustness and generaliz-
ability of a model, just like the standard fine-tuning. The primary
reason is that both training methods require adjusting the model’s pa-
rameters using a biased NLI dataset, leading to a model that heavily
relies on dataset biases as shortcuts for predictions.

Prompting Without Fine-tuning. Preliminary studies are emerging
to examine the robustness of prompt-based methods for huge-size
language models [51, 55]. A study examines the few-shot learning
performance of GPT-3 (2.7B, 13B, and 175B parameters) and GPT-2
(1.5B parameters) on text classification and information extraction
tasks [55]. The results of the analysis reveal that the investigated

LLMs are susceptible to majority label bias and position bias, where
they tend to predict answers based on the frequency or position of the
answers in the training data. Additionally, these LLMs also exhibit
common token bias, where they favor answers that are prevalent
in their pre-training corpus. Another study explores the impact of
prompts on natural language inference tasks in zero-shot and few-
shot settings using T0 (3B and 11B parameters) and GPT-3 (175B
parameters) [51]. Experimental results suggest that models can learn
just as quickly with many irrelevant or even misleading prompts as
they can with effective and instructive prompts. This indicate that
models’ improvement is not derived from models understanding task
instructions in ways analogous to humans’ use of task instructions.

7.2 Prompting versus Standard Fine-tuning
GPT-3’s few-shot prompt performance is compared to that of BERT
and RoBERTa through standard fine-tuning on two natural language
inference tasks, i.e., MNLI and QQP [38]. Additionally, these models
are evaluated on the corresponding difficult OOD datasets: HANS
and PAWS. The results show that GPT-3 performs slightly worse
in generalization than BERT and RoBERTa on the in distribution
MNLI and QQP datasets. On the other hand, GPT-3 achieves higher
accuracy on the OOD tests for the majority of testing settings, in-
dicating that GPT-3 has a lower generalization gap between the in
distribution test set and the OOD test set, and thus a higher robust-
ness. However, further analysis of the HANS dataset reveals that
GPT-3 still exhibits substantial performance disparities between the
bias-supporting and bias-countering subsets. This implies that there
is room for enhancing the robustness of prompt-based techniques.

Note that the current research on prompt-based methods primarily
aims at improving LLMs’ performance on standard benchmarks.
The robustness and generalization of this paradigm still require fur-
ther investigation. A more thorough evaluation of prompt-based
methods is needed and could be a future research topic. Addition-
ally, techniques such as Chain-of-Thought [52] and Scratchpad [25]
have been utilized to encourage models to perform intermediate
calculations. These methods have proven to enhance the reason-
ing abilities of LLMs, thus having the potential to improve their
robustness and generalization capabilities. Lastly, developing miti-
gation frameworks that can improve generalization performance on
OOD test sets without sacrificing standard benchmark performance
deserves more attention from the research community.

8 CONCLUSIONS
We present a thorough survey of the LLM’s shortcut learning issue
for NLU tasks in this article. Our findings suggest that shortcut learn-
ing is caused by a skewed dataset, model architecture, and model
learning dynamics. We also summarize the mitigation solutions that
can be used to reduce shortcut learning and improve the robustness
of LLMs. Furthermore, we discuss directions that merit additional
research effort from the research community, as well as the connec-
tions between shortcut learning and other relevant directions. The
key takeaways from this survey’s analysis are that the current pure
data-driven training paradigm for LLMs is insufficient for high-level
natural language understanding. In the future, the data-driven para-
digm should be combined with domain knowledge at every stage of
model design and evaluation to advance the field of LLMs.
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