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ABSTRACT

The tremendous amount of accessible data in cyberspace face the risk of being
unauthorized used for training deep learning models. To address this concern,
methods are proposed to make data unlearnable for deep learning models by
adding a type of error-minimizing noise. However, such conferred unlearnabil-
ity is found fragile to adversarial training. In this paper, we design new methods
to generate robust unlearnable examples that are protected from adversarial train-
ing. We first find that the vanilla error-minimizing noise, which suppresses the
informative knowledge of data via minimizing the corresponding training loss,
could not effectively minimize the adversarial training loss. This explains the vul-
nerability of error-minimizing noise in adversarial training. Based on the obser-
vation, robust error-minimizing noise is then introduced to reduce the adversarial
training loss. Experiments show that the unlearnability brought by robust error-
minimizing noise can effectively protect data from adversarial training in vari-
ous scenarios. The code is available at https://github.com/fshp971/
robust-unlearnable-examples.

1 INTRODUCTION

Recent advances in deep learning largely rely on various large-scale datasets, which are mainly built
upon public data collected from various online resources such as Flickr, Google Street View, and
search engines (Lin et al., 2014; Torralba et al., 2008; Netzer et al., 2011). However, the process of
data collection might be unauthorized, leading to the risk of misusing personal data for training deep
learning models (Zhang & Tao, 2020; He & Tao, 2020). For example, a recent work demonstrates
that individual information such as name or email could be leaked from a pre-trained GPT-2 model
(Carlini et al., 2020). Another investigation reveals that a company has been continuously collecting
facial images from the internet for training commercial facial recognition models (Hill, 2020).

To prevent the unauthorized use of the released data, recent studies suggest poisoning data with im-
perceptible noise such that the performances of models trained on the modified data be significantly
downgraded (Fowl et al., 2021b;a; Yuan & Wu, 2021; Huang et al., 2021). This work focuses on
that by Huang et al. (2021). Specifically, they introduce unlearnable examples that are crafted from
clean data via adding a type of imperceptible error-minimizing noise and show impressive protec-
tion ability. The error-minimizing noise is designed based on the intuition that an example of higher
training loss may contain more knowledge to be learned. Thereby, the noise protects data from being
learned via minimizing the corresponding loss to suppress the informative knowledge of data.

However, such an unlearnability conferred by error-minimizing noise is found vulnerable to adver-
sarial training (Huang et al., 2021; Tao et al., 2021), a standard approach towards training robust
deep learning models (Madry et al., 2018). In adversarial training, a model trained on the unlearn-
able data can achieve the same performance as that trained on the clean data. Similar problems are
also found in other poisoning-based data protection methods (Fowl et al., 2021b; Yuan & Wu, 2021)
(see Fig. 1). These findings bring great challenges to poisoning-based data protection, and further
raises the following question: Can we still make data unlearnable by adding imperceptible noise
even under the adversarial training?
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Figure 1: We conduct adversarial training on data protected by different types of noise with varied
adversarial perturbation radius ρa. EM denotes error-minimizing noise, TAP denotes targeted adver-
sarial poisoning noise, NTGA denotes neural tangent generalization attack noise, and REM denotes
robust error-minimizing noise. The curves of test accuracy vs. radius ρa are plotted. The results
show that as the radius ρa increases, (1) the protection brought by EM, NTGA and TAP gradually
become invalid, and (2) the proposed REM can still protect data against adversarial learners.

In this paper, we give an affirmative answer that imperceptible noise can indeed stop deep learning
models from learning high-level knowledge in an adversarial manner. We first analyze the reason
why the unlearnability conferred by error-minimizing noise fails under adversarial training. Ad-
versarial training improves the robustness of models via training them on adversarial examples.
However, adversarial examples usually correspond to higher loss, which according to Huang et al.
(2021) may contain more knowledge to be learned. Though the error-minimizing noise is designed
to minimize the training loss, adversarial examples crafted from unlearnable data could still signif-
icantly increase the loss scale (see Fig. 2). Therefore, adversarial training can break the protection
brought by error-minimizing noise and still learn knowledge from these data.

Based on the aforementioned analysis, we further deduce that the invalidation of unlearnable exam-
ples in adversarial training might be attributed to the error-minimizing noise could not effectively
reduce the adversarial training loss. To this end, a new type of noise, named robust error-minimizing
noise, is designed to protect data against adversarial learners via minimizing the adversarial train-
ing loss. Inspired by the strategy of adversarial training and the generation of error-minimizing
noise, a min-min-max optimization is designed to train the robust error-minimizing noise generator.
Examples crafted by adding robust error-minimizing noise are called robust unlearnable examples.

In summary, our work has three main contributions: (1) We present robust error-minimizing noise,
which to the best of our knowledge, is the first and currently the only method that can prevent data
from being learned in adversarial training. (2) We propose to solve a min-min-max optimization
problem to effectively generate robust error-minimizing noise. (3) We empirically verify the effec-
tiveness of robust error-minimizing noise under adversarial training.

2 RELATED WORKS

Adversarial attacks. Adversarial examples are carefully crafted from normal data and can fool ma-
chine learning models to behave unexpectedly. It has been found that machine learning models are
vulnerable to adversarial examples (Szegedy et al., 2013; Goodfellow et al., 2015; Carlini & Wag-
ner, 2017). Though minor data transformations can mitigate the adversaries of adversarial examples
(Lu et al., 2017; Luo et al., 2015), some studies have shown that adversarial examples can further be
made resistant to these transformations (Evtimov et al., 2017; Eykholt et al., 2018; Wu et al., 2020b;
Athalye et al., 2018; Liu et al., 2019; 2020a). This makes adversarial attacks realistic threatens.

To tackle adversarial attacks, adversarial training is proposed to improve the robustness of machine
learning models against adversarial examples. Similar to GANs (Goodfellow et al., 2014; Wang
et al., 2017; 2019), a standard adversarial training algorithm aims to solve a minimax problem that
minimizes the loss function on most adversarial examples (Madry et al., 2018). Other advances
include TRADE (Zhang et al., 2019), FAT (Zhang et al., 2020), GAIRAT (Zhang et al., 2021), (Song
et al., 2020), Jiang et al. (2021), Stutz et al. (2020), Singla & Feizi (2020), Wu et al. (2020a), and Wu
et al. (2021). Tang et al. (2021) propose an adversarial robustness benchmark regarding architecture
design and training techniques. Some works also attempt to interpret how machine learning models
gain robustness (Ilyas et al., 2019; Zhang & Zhu, 2019).
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Poisoning attacks. Poisoning attacks aim to manipulate the performance of a machine learning
model via injecting malicious poisoned examples into its training set (Biggio et al., 2012; Koh
& Liang, 2017; Shafahi et al., 2018; Liu et al., 2020b; Jagielski et al., 2018; Yang et al., 2017;
Steinhardt et al., 2017). Though poisoned examples usually appear different from the clear ones
(Biggio et al., 2012; Yang et al., 2017), however, recent approaches show that poisoned examples
can also be crafted imperceptible to their corresponding origins (Koh & Liang, 2017; Shafahi et al.,
2018). A special case of poisoning attacks is the backdoor attack. A model trained on backdoored
data may perform well on normal data but wrongly behave on data that contain trigger patterns
(Chen et al., 2017; Nguyen & Tran, 2020; 2021; Li et al., 2021; Weng et al., 2020). Compared to
other poisoning attacks, backdoor attack is more covert and thus more threatening (Gu et al., 2017).

Recent works suggest employ data poisoning to prevent unauthorized model training. Huang et al.
(2021) modify data with error-minimizing noise to stop deep models learning knowledge from the
modified data. Yuan & Wu (2021) generate protective noise for data upon an ensemble of neural
networks modeled with neural tangent kernels (Jacot et al., 2018), which thus enjoys strong transfer-
ability. Fowl et al. (2021a) and Fowl et al. (2021b) employ gradient alignment (Geiping et al., 2020;
2021) and PGD method (Madry et al., 2018) to generate adversarial examples as poisoned data to
downgrade the performance of models trained on them. However, Tao et al. (2021) find that existing
poisoning-based protection can be easily broken by adversarial training.

3 PRELIMINARIES

Suppose D = {(x1, y1), · · · , (xn, yn)} is a dataset consists of n samples, where xi ∈ X is the
feature of the i-th sample and yi ∈ Y is the corresponding label. A parameterized machine learning
model is fθ : X → Y , where θ ∈ Θ is the model parameter. Suppose ` : Y × Y → [0, 1] is a
loss function. Then, the empirical risk minimization (ERM) aims to approach the optimal model by
solving the following optimization problem,

min
θ

1

n

n∑
i=1

`(fθ(xi), yi). (1)

Adversarial training (Madry et al., 2018) improves the robustness of models against adversarial
attacks via training them on adversarial examples. A standard adversarial training aims to solve the
following min-max problem,

min
θ

1

n

n∑
i=1

max
‖δi‖≤ρa

`(fθ(xi + δi), yi), (2)

where ρa > 0 is the adversarial perturbation radius and (xi + δi) is the most adversarial example
within the ball sphere centered at xi with radius ρa. Usually, a larger radius ρa implies stronger
adversarial robustness of the trained model.

Unlearnable examples (Huang et al., 2021) is a type of data that deep learning models could not
effectively learn informative knowledge from them. Models trained on unlearnable examples could
only achieve severely low performance. The generation of unlearnable examples contains two steps.
Firstly, train an error-minimizing noise generator f ′θ via solving the following optimization problem,

min
θ

1

n

n∑
i=1

min
‖δi‖≤ρu

`(f ′θ(xi + δi), yi), (3)

where ρu is the defensive perturbation radius that forces the generated error-minimizing noise to
be imperceptible. Then, an unlearnable example (x′, y) is crafted via adding error-minimizing
noise generated by the trained noise generator f ′θ to its clean counterpart (x, y), where x′ =
x + arg min‖δ‖≤ρu `(f

′
θ(x + δ), y). The intuition behind this is, a smaller loss may imply less

knowledge that could be learned from an example. Thus, error-minimizing noise aims to make data
unlearnable via reducing the corresponding training loss. It is worth noting that once the unlearnable
data is released publicly, the data defender could not modify the data any further.

Projected gradient descent (PGD) (Madry et al., 2018) is a standard approach for solving the
inner maximization and minimization problems in Eqs. (2) and (3). It performs iterative projection
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Figure 2: The training loss curves of ERM training and adversarial training on CIFAR-10. Lower
training losses suggest stronger unlearnability of data. The results show that: (1) error-minimizing
noise could not reduce the training loss as effectively as that in ERM training; (2) robust error-
minimizing noise can preserve the training loss in significantly low levels across various learning
scenarios. These observations suggest that robust error-minimizing noise is more favorable in pre-
venting data from being learned via adversarial training.

updates to search for the optimal perturbation as follows,

δ(k) =
∏
‖δ‖≤ρ

[
δ(k−1) + c · α · sign

(
∂

∂δ
l(fθ(x+ δ(k−1)), y)

)]
,

where k is the current iteration step (K steps at all), δ(k) is the perturbation found in the k-th
iteration, c ∈ {−1, 1} is a factor for controlling the gradient direction, α is the step size, and

∏
‖δ‖≤ρ

means the projection is calculated in the ball sphere {δ : ‖δ‖ ≤ ρ}. The final output perturbation is
δ(K). Throughout this paper, the coefficient c is set as 1 when solving maximization problems and
−1 when solving minimization problems.

4 ROBUST UNLEARNABLE EXAMPLES

In this section, we first illustrate the difficulty of reducing adversarial training loss with error-
minimizing noise, and then introduce robust unlearnable examples to tackle the raised challenge.

4.1 ERROR-MINIMIZING NOISE IN ADVERSARIAL TRAINING

Error-minimizing noise prevents unauthorized model training via reducing the corresponding loss
to suppress the learnable knowledge of data. However, the goal of reducing training loss may be
at odds with that of adversarial training. Recall Eq. (2), adversarial examples usually correspond
to higher training losses than that of the clean data, which according to Huang et al. (2021) may
contain more knowledge to be learned. Even if error-minimizing noise presents, crafting adversarial
examples from unlearnable data could still significantly increase the training loss.

To better illustrate this phenomenon, we conduct adversarial training on clean data and unlearnable
data with different adversarial perturbation radius ρa. The training losses along the training process
are collected and plotted in Fig. 2. From the figure, it can be found that error-minimizing noise could
not reduce the training loss as effectively as that in ERM training. Furthermore, as the adversarial
perturbation radius ρa increases, the adversarial training loss curves on unlearnable data eventually
coincide with that on clean data. These observations suggest that adversarial training can effectively
recover the knowledge of data protected by error-minimizing noise, which makes the conferred
unlearnability invalid.

4.2 ROBUST ERROR-MINIMIZING NOISE

Motivated by the empirical study in Section 4.1, we propose a type of imperceptible noise, named
robust error-minimizing noise, to protect data against adversarial learners. Robust error-minimizing
noise is designed to minimize the adversarial training loss during adversarial training, which in-
tuitively can barrier the knowledge learning process in adversarial training. Examples crafted via
adding robust error-minimizing noise are named robust unlearnable examples.
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Similar to that in Huang et al. (2021), the generation of robust error-minimizing noise also needs to
first train a noise generator f ′θ. Inspired by the adversarial training loss in Eq. (2) and the objec-
tive function for training error-minimizing noise generator in Eq. (3), a min-min-max optimization
process is designed to train the robust error-minimizing noise generator f ′θ as follows,

min
θ

1

n

n∑
i=1

min
‖δui ‖≤ρu

max
‖δai ‖≤ρa

`(f ′θ(xi + δui + δai ), yi), (4)

where the defensive perturbation radius ρu forces the generated noise to be imperceptible, and the
adversarial perturbation radius ρa controls the protection level of the noise against adversarial train-
ing. The idea behind Eq. (4) is, we aim to find a “safer” defensive perturbation δu∗i such that the
adversarial example crafted from the protected sample point (xi+δu∗i ) would not increase the train-
ing loss too much. As a result, the adversarial learner could not extract much knowledge from the
data protected by this safer defensive perturbation.

For the choices of the two perturbation radii ρu and ρa, we notice that when ρu ≤ ρa, the following
inequality holds for each summation term in Eq. (4),

min
‖δui ‖≤ρu

max
‖δai ‖≤ρa

`(f ′θ(xi + δui + δai ), yi) ≥ `(f ′θ(xi), yi).

The above inequality suggests that when ρu ≤ ρa, the generated defensive noise δui could not
suppress any learnable knowledge of data even in ERM training. Thereby, to help the generated
noise gain remarkable protection ability, the radius ρu should be set larger than ρa.

4.3 ENHANCING THE STABILITY OF THE NOISE

However, the unlearnability conferred by the noise generated via Eq. (4) is found to be fragile to mi-
nor data transformation. For example, standard data augmentation (Shorten & Khoshgoftaar, 2019)
can easily make the conferred unlearnability invalid (see Section 5.2). To this end, we adopt the
expectation over transformation technique (EOT; Athalye et al. 2018) into the generation of robust
error-minimizing noise. EOT is a stability-enhancing technique that was first proposed for adver-
sarial examples (Evtimov et al., 2017; Eykholt et al., 2018; Athalye et al., 2018). Since adversarial
examples and robust unlearnable examples are similar to some extent, it is likely that EOT can also
help to improve the stability of robust error-minimizing noise.

Suppose T is a given distribution over a set of some transformation functions {t : X → X}. Then,
the objective function for training robust error-minimizing noise generator with EOT is adapted from
Eq. (4) as follows,

min
θ

1

n

n∑
i=1

min
‖δui ‖≤ρu

Et∼T max
‖δai ‖≤ρa

`(f ′θ(t(xi + δui ) + δai ), yi). (5)

Eq. (5) suggests that, when searching for the defensive perturbation δui , one needs to minimize
several adversarial losses of a set of the transformed examples rather than only minimize the adver-
sarial losses of single examples. After finishing training the noise generator via Eq. (5), the robust
unlearnable example (x′, y) for a given data point (x, y) is generated as

x′ = x+ arg min
‖δu‖≤ρu

Et∼T max
‖δa‖≤ρa

`(f ′θ(t(x+ δu) + δa), y).

4.4 EFFICIENTLY TRAINING THE NOISE GENERATOR

To train the robust error-minimizing noise generator with Eq. (5), we employ PGD to solve the
inner minimization and maximization problems. The main challenge of this approach is the gradient
calculation of the inner maximization function.

Specifically, the inner maximization function in Eq. (5) usually does not have an analytical solution.
As a result, its gradient calculation could not be directly handled by modern Autograd systems such
as PyTorch and TensorFlow. Toward this end, we approximate the gradient via first calculating
the optimal perturbation δai

∗ = arg max‖δai ‖≤ρa `(f
′
θ(t(xi + δui ) + δai ), yi) with PGD, and then

approximating the gradient of the maximization function by ∂
∂δui

`(f ′θ(t(xi + δui ) + δai
∗), yi).
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Algorithm 1 Training robust error-minimizing noise generator with Eq. (5)

Input: Training data set D, training iteration M ,
1: PGD parameters ρu, αu and Ku for solving the minimization problem,
2: PGD parameters ρa, αa and Ka for solving the maximization problem,
3: The data transformation distribution T ,
4: the number of sampling time J when approximating the gradient of the expectation function.

Output: Robust error-minimizing noise generator f ′θ.
5: Initialize source model parameter θ.
6: for i in 1, · · · ,M do
7: Sample a minibatch (x, y) ∼ D.
8: Initialize δu.
9: for k in 1, · · · ,Ku do

10: for j in 1, · · · , J do
11: Sample a transformation function tj ∼ T .
12: δaj ← PGD(tj(x+ δu), y, f ′θ, ρa, αa,Ka) . Finding adversarial perturbation.
13: end for
14: gk ← 1

J

∑J
j=1

∂
∂δu `(f

′
θ(tj(x+ δu) + δaj ), y)

15: δu ←
∏
‖δ‖≤ρu (δu − αu · sign(gk))

16: end for
17: Sample a transformation function t ∼ T .
18: δa ← PGD(t(x+ δu), y, f ′θ, ρa, αa,Ka)
19: Update source model parameter θ based on minibatch (t(x+ δu) + δa, y).
20: end for
21: return f ′θ

Therefore, when searching for the optimal defensive perturbation δu∗i with PGD, one can follow
Athalye et al. (2018) to approximate the gradient of the expectation of transformation via first sam-
pling several transformation functions and then averaging the gradients of the corresponding inner
maximization function. The gradients of the inner maximization function are approximated via the
aforementioned gradient approximation method. Finally, the overall procedures for solving Eq. (5)
are presented as Algorithm 1. The effect of the robust error-minimizing noise generated based on Al-
gorithm 1 is illustrated in Fig. 2, which verifies the ability of error-minimizing noise of suppressing
training loss in adversarial training.

5 EXPERIMENTS

In this section, we conduct comprehensive experiments to verify the effectiveness of the robust
error-minimizing noise in preventing data being learned by adversarial learners.

5.1 EXPERIMENT SETUP

Datasets. Three benchmark computer vision datasets, CIFAR-10, CIFAR-100 (Krizhevsky et al.,
2009), and an ImageNet subset (consists of the first 100 classes) (Russakovsky et al., 2015), are used
in our experiments. The data augmentation technique (Shorten & Khoshgoftaar, 2019) is adopted in
every experiment. For the detailed settings of the data augmentation, please see Appendix A.2.

Robust error-minimizing noise generation. Following Huang et al. (2021), we employ ResNet-18
(He et al., 2016) as the source model f ′θ for training robust error-minimizing noise generator with
Eq. (5). The L∞-bounded noises ‖δu‖∞ ≤ ρu and ‖δa‖∞ ≤ ρa are adopted in our experiments.
The detailed training settings are presented in Appendix A.3.1.

Baseline methods. The proposed robust error-minimizing noise (REM) is compared with three
state-of-the-art data protection noises, the error-minimizing noise (EM) (Huang et al., 2021), the
targeted adversarial poisoning noise (TAP) (Fowl et al., 2021b), and the neural tangent generaliza-
tion attack noise (NTGA) (Yuan & Wu, 2021). See Appendix A.3.2 for the detailed generation
procedures of every type of noise.
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(a) CIFAR-10.
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(b) ImageNet subset.

Figure 3: Visualization results of different types of defensive noise as well as the correspondingly
crafted examples. EM denotes error-minimizing noise, TAP denotes targeted adversarial poisoning
noise, NTGA denotes neural tangent generalization attack noise, and REM denotes robust error-
minimizing noise.

Table 1: Test accuracy (%) of models trained on data protected by different defensive noises via
adversarial training with different perturbation radii. The defensive perturbation radius ρu is set
as 8/255 for every type of noise, while the adversarial perturbation radius ρa of REM noise takes
various values.

Dataset Adv. Train.
ρa

Clean EM TAP NTGA REM

ρa = 0 1/255 2/255 3/255 4/255

CIFAR-10

0 94.66 13.20 22.51 16.27 15.18 13.05 20.60 20.67 27.09
1/255 93.74 22.08 92.16 41.53 27.20 14.28 22.60 25.11 28.21
2/255 92.37 71.43 90.53 85.13 75.42 29.78 25.41 27.29 30.69
3/255 90.90 87.71 89.55 89.41 88.08 73.08 46.18 30.85 35.80
4/255 89.51 88.62 88.02 88.96 89.15 86.34 75.14 47.51 48.16

CIFAR-100

0 76.27 1.60 13.75 3.22 1.89 3.72 3.03 8.31 10.14
1/255 71.90 71.47 70.03 65.74 9.45 4.47 5.68 9.86 11.99
2/255 68.91 68.49 66.91 66.53 52.46 13.36 7.03 11.32 14.15
3/255 66.45 65.66 64.30 64.80 66.27 44.93 27.29 17.55 17.74
4/255 64.50 63.43 62.39 62.44 64.17 61.70 61.88 41.43 27.10

ImageNet
Subset

0 80.66 1.26 9.10 8.42 2.54 4.52 6.20 8.88 13.74
1/255 76.20 74.88 75.14 63.28 12.80 14.68 13.42 14.92 21.58
2/255 72.52 71.74 70.56 66.96 49.58 33.14 27.06 23.76 29.40
3/255 69.68 66.90 67.64 65.98 66.68 42.97 41.18 32.16 35.76
4/255 66.62 63.40 63.56 63.06 64.80 59.32 51.78 41.52 41.66

Model training. We follow Eq. (2) to conduct adversarial training (Madry et al., 2018) on data
protected by different defensive noises with different models, including VGG-16 (Simonyan & Zis-
serman, 2014), ResNet-18, ResNet-50 (He et al., 2016), DenseNet-121 (Huang et al., 2017), and
wide ResNet-34-10 (Zagoruyko & Komodakis, 2016). Similar to that in training noise generator,
we also focus on L∞-bounded noise ‖ρa‖∞ ≤ ρa in adversarial training. Note that when ρa takes 0,
the adversarial training in Eq. (2) degenerates to the ERM training in Eq. (1). The detailed training
settings are given in Appendix A.4.

Metric. We use the test accuracy to assess the data protection ability of the defensive noise. A low
test accuracy suggests that the model learned little knowledge from the training data, which thus
implies a strong protection ability of the noise.

5.2 EFFECTIVENESS OF ROBUST ERROR-MINIMIZING NOISE

In this section, we study the effectiveness of robust error-minimizing noise from different aspects.
We first visualize different defensive noises and the correspondingly crafted examples in Fig. 3.
More visualization results can be found in Appendix B.

Different adversarial training perturbation radius. We first add different defensive noises to the
entire training set. The defensive perturbation radius ρu of every noise is set as 8/255. Adversarial
training is then conducted on both clean data and modified data with ResNet-18 models and different
adversarial training perturbation radii ρa. Table 1 reports the accuracies of the trained models on
clean test data. We have also conducted experiments on noises that generated with a larger defensive
perturbation radius ρu = 16/255, and the results are presented in Table 7 in Appendix C.
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Table 2: Test accuracy (%) on CIFAR-10 and CIFAR-100 with different protection percentages.
For EM, TAP, and NTGA noises, the perturbation radius ρu is set as 8/255. For REM noise, the
perturbation radii ρu and ρa are set as 8/255 and 4/255, respectively.

Dataset Adv.
Train.
ρa

Noise
Type

Data Protection Percentage

0% 20% 40% 60% 80% 100%Mixed Clean Mixed Clean Mixed Clean Mixed Clean

CIFAR-10

2/255

EM

92.37

92.26

91.30

91.94

90.31

91.81

88.65

91.14

83.37

71.43
TAP 92.17 91.62 91.32 91.48 90.53

NTGA 92.41 92.19 92.23 91.74 85.13
REM 92.36 90.22 88.45 82.98 30.69

4/255

EM

89.51

89.60

88.17

89.40

86.76

89.49

85.07

89.10

79.41

88.62
TAP 89.01 88.66 88.40 88.04 88.02

NTGA 89.56 89.35 89.22 89.17 88.96
REM 89.60 89.34 89.61 88.09 48.16

CIFAR-100

2/255

EM

68.91

68.51

66.54

68.72

64.21

67.96

58.35

68.44

47.99

68.49
TAP 68.05 67.83 67.75 67.27 66.91

NTGA 68.52 68.82 68.36 68.71 66.53
REM 69.00 68.20 60.75 52.33 14.15

4/255

EM

64.50

63.86

61.73

64.24

57.61

63.62

53.86

63.37

44.79

63.43
TAP 63.21 63.01 62.95 62.90 62.39

NTGA 63.48 63.59 63.64 62.83 62.44
REM 63.75 63.99 64.36 63.05 27.10

As shown in Table 1, when the adversarial training perturbation radius increases, the test accuracy of
the model trained on unlearnable data and targeted adversarial poisoned data rapidly increases. On
the other hand, the robust error-minimizing noise can always significantly reduces the test accuracy
even when adversarial training presents. Furthermore, in the extreme case when the model trained
on unlearnable data and targeted adversarial poisoned data achieve the same performance as that
trained on clean data, the robust error-minimizing noise can still reduce the test accuracy of the
model trained on robust unlearnable data by around 20% to 40%. These results demonstrate the
effectiveness of the robust error-minimizing noise against adversarial learners.

Different protection percentages. We then study a more challenging as well as more realistic
learning scenario, where only a part of the data are protected by the defensive noise, while the
others are clean. Specifically, we randomly select a part of the training data from the whole training
set, adding defensive noise to the selected data, and conduct adversarial training with ResNet-18
on the mixed data and the remaining clean data.The defensive perturbation radius for every noise
is set as 8/255, while the adversarial perturbation radius ρa of the robust error-minimizing noise
is set as 4/255. The accuracies on clean test data are reported in Table 2. The difference between
the test accuracies on mixed data and clean data reflects the knowledge gained from the protected
training data. We have also conducted experiments with noises that generated with a larger defensive
perturbation radius ρu = 16/255. The results are reported in Table 8 in Appendix C.

Table 2 shows that when the adversarial training perturbation radius is small, robust error-
minimizing noise can effectively protect the selected part of the data. However, when a large adver-
sarial training perturbation radius presents, the protection becomes worthless. This suggests that to
protect data against adversarial training with a perturbation radius ρa, one has to set the defensive
perturbation radius ρu of the robust error-minimizing noise to a value that is relatively larger than
ρa. Table 2 shows that as the data protection percentage decreases, the performance of the trained
model increases. This suggests that the model can learn more knowledge from more clean data,
which coincides with intuition. Nevertheless, Table 2 further shows that the data protection ability
of the robust error-minimizing noise is stronger than that of the error-minimizing noise and the tar-
geted adversarial poisoning noise. This demonstrates that the robust error-minimizing noise is still
more favorable than other types of defensive noise when adversarial training presents.

Different model architectures. So far, we have only conduct adversarial training with ResNet-
18, which is as same as the source model in the defensive noise generation. We now evaluate
the effectiveness of the robust error-minimizing noise under different adversarial learning models.
Specifically, we conduct adversarial training with a perturbation radius 4/255 and five different types
of model, including VGG-16, ResNet-18, ResNet-50, DenseNet-121, and wide ResNet-34-10, on
data that is protected by noise generated via ResNet-18. Table 3 presents the test accuracies of the
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Table 3: Test accuracy (%) of different types of models on CIFAR-10 and CIFAR-100 datasets.
The adversarial training perturbation radius is set as 4/255. The defensive perturbation radius ρu of
every type of defensive noise is set as 8/255.

Dataset Model Clean EM TAP NTGA REM

ρa = 2/255 4/255

CIFAR-10

VGG-16 87.51 86.48 86.27 86.65 75.97 65.23
RN-18 89.51 88.62 88.02 88.96 75.14 48.16
RN-50 89.79 89.28 88.45 88.79 73.59 40.65

DN-121 83.27 82.44 81.72 80.73 77.82 81.48
WRN-34-10 91.21 90.05 90.23 89.95 73.98 48.39

CIFAR-100

VGG-16 57.14 56.94 55.24 55.81 56.50 48.85
RN-18 63.43 64.17 62.39 62.44 61.88 27.10
RN-50 66.93 66.43 64.44 64.91 61.30 26.03

DN-121 53.73 53.52 52.93 52.40 54.19 54.48
WRN-34-10 68.64 68.27 65.80 67.41 64.11 25.04

trained models on CIFAR-10 and CIFAR-100. We have also conducted experiments on noises that
generated with a larger defensive perturbation radius ρu = 16/255. See Table 9 in Appendix C.

Table 3 shows the robust error-minimizing noise generated from ResNet-18 can effectively protect
data against various adversarially trained models. However, when the DenseNet-121 model presents,
the robust error-minimizing noise could not achieve the same protection performance as that in other
scenarios. This may partially be attributed to the limitation of DenseNet-121 itself in adversarial
training, as it could not achieve the same generalization ability as those other models on clean data.
We will leave further studies on this phenomenon in future works. Nevertheless, the experiment
results still demonstrate the effectiveness of robust error-minimizing noise in most cases.

Table 4: Ablation study on the EOT technique. Test accura-
cies (%) of models trained on CIFAR-10 and CIFAR-100 are
reported. The defensive perturbation radius ρu of the REM
noise is set as 8/255. “EOT” and “None” denote that the noise
is generated with and without the EOT technique, respectively.

Dataset
Adv.
Train.
ρa

Clean
REM

ρa = 2/255 4/255

EOT None EOT None

CIFAR-10
0/255 94.66 20.60 29.15 27.09 18.55
2/255 92.37 25.41 91.69 30.69 91.76
4/255 89.51 75.14 89.17 48.16 89.41

CIFAR-100
0/255 76.27 3.03 4.64 10.14 7.03
2/255 68.91 7.03 68.85 14.15 69.98
4/255 64.50 61.88 63.51 27.10 63.79

Ablation study on the EOT tech-
nique. In Section 4.3, we pro-
pose to employ the EOT technique
to enhance the stability of the ro-
bust error-minimizing noise in ad-
versarial training. Here, we em-
pirically investigate the effect of
EOT. Specifically, we conduct ad-
versarial training with ResNet-18
on datasets protected by robust er-
ror noises that are generated with
and without the EOT technique, re-
spectively. The accuracies of the
trained models on clean test data
are reported in Table 4. The results
show that without EOT, the gener-
ated noise gains no protection ability, which in turn justifies the necessity of employing EOT during
the robust error-minimizing noise generation.

6 CONCLUSION AND FUTURE WORKS

This paper proposes robust error minimizing noise, the first defensive noise that can protect data
from being learned by unauthorized adversarial training. We deduce that the error-minimizing noise
proposed by Huang et al. (2021) could not prevent unauthorized adversarial training mainly because
it can not suppress the training loss in adversarial training based on empirical study. Motivated by
this, the robust error-minimizing noise is introduced to effectively reduce the adversarial training loss
and thus suppress the learnable knowledge of data in adversarial training. Inspired by the adversarial
training loss and the vanilla error-minimizing noise generation, a min-min-max problem is designed
for training the robust error-minimizing noise generator, where the expectation over transform tech-
nique is adopted to enhance the stability of the generated noise. An important future direction is
to establish theoretical foundations for the effectiveness of robust-error minimizing noise. Another
interesting direction is to design more efficient robust error-minimizing noise generation methods.
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A EXPERIMENT DETAILS

This section provides the experiment details omitted from Section 5.

A.1 HARDWARE DETAILS

The experiments on CIFAR-10 and CIFAR-100 are conducted on 1 GPU (NVIDIA® Tesla® V100
16GB) and 10 CPU cores (Intel® Xeon® Processor E5-2650 v4 @ 2.20GHz).

The experiments on ImageNet are conducted on 4 GPU (NVIDIA® Tesla® V100 16GB) and 40
CPU cores (Intel® Xeon® Processor E5-2650 v4 @ 2.20GHz).

A.2 DATA AUGMENTATION

We use different data augmentations for different datasets. For CIFAR-10 and CIFAR-100, we
perform data augmentation via random flipping, padding 4 pixels on each side, random cropping to
32 × 32 size, and rescaling per pixel to [−0.5, 0.5] for each image. For the ImageNet subset, we
perform data augmentation via random cropping, resizing to 224 × 224 size, random flipping, and
rescaling per pixel to [−0.5, 0.5] for each image.

A.3 DEFENSIVE NOISE GENERATION

Our experiments involve three types of defensive noise, the proposed robust error-minimizing noise,
and two baseline methods, error-minimizing noise and adversarial poisoning noise.

Table 5: The settings of PGD (see Eq. (3)) for the noise generations of error-minimizing noise (EM),
targeted adversarial poisoning noise (TAP), neural tangent generalization attack noise (NTGA), and
robust error-minimizing noise (REM) in different experiments. ρu denotes the defensive perturba-
tion radius of different types of noise, while ρa denotes the adversarial perturbation radius of the
robust error-minimizing noise.

Datasets Noise Type αu Ku αa Ka

CIFAR-10
CIFAR-100

EM ρu/5 10 - -
TAP ρu/125 250 - -

NTGA ρu/10× 1.1 10 - -
REM ρu/5 10 ρa/5 10

ImageNet
Subset

EM ρu/5 7 - -
TAP ρu/50 100 - -

NTGA ρu/8× 1.1 8 - -
REM ρu/4 7 ρa/5 10

A.3.1 ROBUST ERROR-MINIMIZING NOISE

Following Huang et al. (2021), we employ ResNet-18 (He et al., 2016) as the source model f ′ for the
robust error-minimizing noise generation. The L∞-bounded noises ‖δu‖∞ ≤ ρu and ‖δa‖∞ ≤ ρa
are adopted in our experiments, in which the defensive perturbation radius ρu and adversarial per-
turbation radius ρa can take various values. The settings of PGD for solving the inner minimization
and maximization problems in Eq. (5) are presented in Table 5.

For CIFAR-10 and CIFAR-100, each source model is trained with SGD for 5, 000 iterations, with
a batch size of 128, a momentum factor of 0.9, a weight decay factor of 0.0005, an initial learning
rate of 0.1, and a learning rate scheduler that decay the learning rate by a factor of 0.1 every 2, 000
iterations. For EOT, the data transformation T is set as the data augmentation of the corresponding
dataset, and the repeatedly sampling number for expectation estimation is set as 5.

Besides, for the ImageNet subset, each source model is trained with SGD via Eq. (5) for 3, 000
iterations, with a batch size of 128, a momentum factor of 0.9, a weight decay factor of 0.0005, an
initial learning rate of 0.1, and a learning rate scheduler that decay the learning rate by a factor of
0.1 every 1, 200 iterations. For EOT, the data transformation T is set as the data augmentation of the
corresponding dataset, and the repeatedly sampling number for expectation estimation is set as 4.
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A.3.2 BASELINE METHODS IMPLEMENTATIONS

Two baseline methods are adopted in our experiments as comparisons, including the error-
minimizing noise method and the targeted adversarial poisoning noise method. Every method is
reproduced on our own.

Error-minimizing noise (Huang et al., 2021). We follow Eq. (3) to train the error-minimizing noise
generator. The error-minimizing noise is then generated with the trained noise generator. ResNet-18
model is used as the source model f ′. PGD is employed for solving the inner minimization problem
in Eq. (3), where the settings of PGD is presented in Table 5. Other hyperparameters for training
the noise generator are set the same as that for the robust error-minimizing noise generator in the
previous section.

Targeted adversarial poisoning noise (Fowl et al., 2021b). This type of noise is generated via
conducting targeted adversarial attack to the model that is trained on clean data, in which the gen-
erated adversarial perturbation is used as the adversarial poisoning noise. Specifically, given a fixed
model f0 and a sample (x, y), the targeted adversarial attack will generate noise via solving the
problem arg max‖δu‖≤ρu `(f0(x+ δu), g(y)), where g is a permutation function on the label space
Y . PGD with differentiable data augmentation (Geiping et al., 2021) is employed for solving the
above problem. The hyper-parameters for the PGD is given in Table 5.

Neural tangent generalization attack noise (Yuan & Wu, 2021). This type of protective noise
aims to weaken the generalization ability of the model trained on the modified data. To do this,
an ensemble of neural networks is modeled based on neural tangent kernel (NTK) (Jacot et al.,
2018), and the NTGA noise is generated upon the ensemble model. As a result, the NTGA noise
enjoys remarkable transferability. We use the official code of NTGA 1 to generate this type of
noise. Specifically, we employ the FNN model in Yuan & Wu (2021) as the ensemble model. For
CIFAR-10 and CIFAR-100, the block size for approximating NTK is set as 4, 000. For the ImageNet
subset, the block size is set as 100. The hyper-parameters for the PGD are given in Table 5. Other
experiment settings follow Yuan & Wu (2021), please refer accordingly.

A.3.3 TIME COSTS OF NOISE GENERATIONS

We calculate the time costs for training different types of noise generators on different datasets. The
results are reported in the following Table 6.

Table 6: Time costs for training different defensive noise generators on different datasets.

Dataset EM TAP NTGA REM

CIFAR-10 0.4h 0.5h 5.2h 22.6h
CIFAR-100 0.4h 0.5h 5.2h 22.6h

ImageNet Subset 3.9h 5.2h 14.6h 51.2h

A.4 MODEL TRAINING DETAILS

We follow Eq. (2) to perform adversarial training (Madry et al., 2018). Similar to that in training
noise generator, we also focus on L∞-bounded noise ‖ρa‖∞ ≤ ρa in adversarial training.

In every experiment, the model is trained with SGD for 40, 000 iterations, with a batch size of 128,
a momentum factor of 0.9, a weight decay factor of 0.0005, an initial learning rate of 0.1, and a
learning rate scheduler that decays the learning rate by a factor of 0.1 every 16, 000 iterations. For
CIFAR-10 and CIFAR-100, the steps number Ka and the step size αa in PGD are set as 10 and
ρa/5. For the ImageNet subset, the steps number Ka and the step size αa are set as 8 and ρa/4.

1The official code of NTGA is available at https://github.com/lionelmessi6410/ntga.
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B NOISE VISUALIZATION

This section presents more visualization results of different defensive noises.

B.1 CIFAR-10

Clean

EM TAP NTGA REM

(a) Defensive perturbation radius ρu = 8/255.

Clean

EM TAP NTGA REM

(b) Defensive perturbation radius ρu = 16/255.

Clean

EM TAP NTGA REM

(c) Defensive perturbation radius ρu = 8/255.

Clean

EM TAP NTGA REM

(d) Defensive perturbation radius ρu = 16/255.

Clean

EM TAP NTGA REM

(e) Defensive perturbation radius ρu = 8/255.

Clean

EM TAP NTGA REM

(f) Defensive perturbation radius ρu = 16/255.
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(g) Defensive perturbation radius ρu = 8/255.
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(h) Defensive perturbation radius ρu = 16/255.

Figure 4: Visualization results of CIFAR-10. Examples of data protected by error-minimizing
noise (EM), targeted adversarial poisoning noise (TAP), neural tangent generalization attack noise
(NTGA), and robust error-minimizing noise (REM). When ρu is set as 8/255 or 16/255, the adver-
sarial perturbation radius ρa of REM is set as 4/255 or 8/255.
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B.2 CIFAR-100
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(e) Defensive perturbation radius ρu = 8/255.
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(f) Defensive perturbation radius ρu = 16/255.
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(g) Defensive perturbation radius ρu = 8/255.
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(h) Defensive perturbation radius ρu = 16/255.

Figure 5: Visualization results of CIFAR-100. Examples of data protected by error-minimizing
noise (EM), targeted adversarial poisoning noise (TAP), neural tangent generalization attack noise
(NTGA), and robust error-minimizing noise (REM). When ρu is set as 8/255 or 16/255, the adver-
sarial perturbation radius ρa of REM is set as 4/255 or 8/255.
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B.3 IMAGENET SUBSET
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(f) Defensive perturbation radius ρu = 16/255.
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(g) Defensive perturbation radius ρu = 8/255.
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(h) Defensive perturbation radius ρu = 16/255.

Figure 6: Visualization results of ImageNet subset. Examples of data protected by error-minimizing
noise (EM), targeted adversarial poisoning noise (TAP), neural tangent generalization attack noise
(NTGA), and robust error-minimizing noise (REM). When ρu is set as 8/255 or 16/255, the adver-
sarial perturbation radius ρa of REM is set as 4/255 or 8/255.
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C MORE EXPERIMENTS RESULTS

This section collects the additional experiment results for Section 5.2.

Different adversarial training perturbation radius.

Table 7: Test accuracy (%) of models trained on data that are protected by different defensive noises
via adversarial training with different perturbation radii. The defensive perturbation radius ρu is set
as 16/255 for every type of noise, while the adversarial perturbation radius ρa of REM noise takes
various values.

Dataset Adv. Train.
ρa

Clean EM TAP NTGA REM

ρa = 0 2/255 4/255 6/255 8/255

CIFAR-10

0 94.66 16.84 11.29 10.91 13.69 13.15 19.51 24.54 24.08
2/255 92.37 22.46 78.01 19.96 21.17 17.73 20.46 21.89 26.30
4/255 89.51 41.95 87.60 32.80 45.87 31.18 23.52 26.11 28.31
6/255 86.90 52.13 85.44 60.64 66.82 58.37 40.25 30.93 31.50
8/255 84.79 64.71 82.56 74.50 77.08 72.87 63.49 46.92 36.37

CIFAR-100

0 76.27 1.44 4.84 1.54 2.14 4.16 4.27 5.86 11.16
2/255 68.91 5.21 64.59 5.21 6.68 5.04 4.83 7.86 13.42
4/255 64.50 35.65 61.48 18.43 28.27 9.80 6.87 9.06 14.46
6/255 60.86 56.73 57.66 46.30 47.08 35.25 30.16 14.41 17.67
8/255 58.27 56.66 55.30 50.81 54.23 49.82 54.55 33.86 23.29

ImageNet
Subset

0 80.66 1.10 3.96 3.42 2.90 3.40 3.86 5.90 9.72
2/255 72.52 70.94 70.80 19.90 16.00 8.50 5.66 8.78 14.74
4/255 66.62 62.16 62.54 41.08 44.12 20.58 11.20 12.46 19.38
6/255 58.80 55.46 54.68 44.32 55.04 34.04 19.12 16.24 23.14
8/255 53.12 46.44 46.90 42.78 47.96 44.54 28.20 21.66 26.64

Different data protection percentages.

Table 8: Test accuracy (%) of models trained on CIFAR-10 and CIFAR-100 with different protection
percentages. The defensive perturbation radius of every noise is set as ρu = 16/255. The adversarial
perturbation radius of robust error-minimizing noise is set as 8/255.

Dataset Adv.
Train.
ρa

Noise
Type

Data Protection Percentage

0% 20% 40% 60% 80% 100%mixed clean mixed clean mixed clean mixed clean

CIFAR-10

4/255

EM

89.51

89.45

88.17

88.00

86.76

86.53

85.07

81.62

79.41

41.95
TAP 88.80 88.64 87.50 87.83 87.60

NTGA 89.63 88.70 87.11 83.32 32.80
REM 89.08 87.00 85.05 79.00 28.31

8/255

EM

84.79

84.20

83.25

84.37

81.54

83.70

79.29

82.91

73.21

64.71
TAP 84.24 83.58 83.42 83.09 82.56

NTGA 84.62 84.18 84.48 83.26 74.50
REM 84.85 83.99 83.15 80.05 36.37

CIFAR-100

4/255

EM

64.50

64.27

61.73

63.26

57.61

63.86

53.86

61.45

44.79

35.65
TAP 63.00 62.69 62.65 60.99 61.48

NTGA 63.47 63.09 63.14 58.72 18.43
REM 63.01 59.90 54.52 47.27 14.46

8/255

EM

58.27

57.44

55.00

57.70

50.72

57.14

46.29

57.27

39.65

56.66
TAP 57.75 57.15 56.32 55.73 55.30

NTGA 57.49 56.35 55.69 53.92 50.81
REM 57.78 58.12 57.69 55.30 23.29
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Different model architectures.

Table 9: Test accuracy (%) of different types of models trained on CIFAR-10 and CIFAR-100. The
defensive perturbation radius ρu of every defensive noise is set as 16/255. The adversarial training
perturbation radius is set as 8/255.

Dataset Model Clean EM TAP NTGA REM

ρa = 4/255 8/255

CIFAR-10

VGG-16 79.92 63.18 77.73 69.99 63.02 41.17
RN-18 84.79 64.71 82.56 74.50 63.49 36.37
RN-50 79.92 61.32 82.59 72.39 57.84 31.91

DN-121 75.75 67.70 74.35 66.56 62.39 58.70
WRN-34-10 86.36 65.42 84.19 76.42 64.91 37.51

CIFAR-100

VGG-16 45.67 45.56 43.42 38.83 48.44 22.54
RN-18 58.27 56.66 55.30 50.81 54.55 23.29
RN-50 60.15 58.34 56.67 51.88 54.68 21.19

DN-121 48.28 47.12 46.74 41.05 47.36 42.87
WRN-34-10 60.95 58.50 57.92 54.47 58.22 22.67

The evolution of the train and test accuracies along the adversarial training process. The
curves of train and test accuracies on data protected by different defensive noises are drawn in Fig.
7. The figure shows that robust error-minimizing noise can effectively protect data from being
learned along the adversarial training process, while other existing approaches could not. This result
further justifies the effectiveness of our proposed method.
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(b) Evolution of the test accuracy.

Figure 7: The curves of train and test accuracies to training iteration on data protected by differ-
ent defensive noises. The defensive perturbation radius ρu for every noise is set as 8/255, while
the adversarial perturbation radius ρa for REM is set as 4/255. Besides, the adversarial training
perturbation radius is set as 4/255 in every experiment.
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The selections of adversarial perturbation radius ρa in robust error-minimizing noise gener-
ation. We conduct adversarial training against the robust error-minimizing noises generated with
a fixed defensive perturbation radius ρu and different adversarial perturbation radii ρa. The results
are presented Fig. 8, which suggests that setting the adversarial perturbation radius to be half of
the defensive perturbation radius would help the noise achieve consistent protection ability against
adversarial training with different perturbation radii.
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Figure 8: We conduct adversarial training on data protected by different robust error-minimizing
noise (REM). The curves of test accuracy vs. adversarial training radius are plotted. The defensive
perturbation radius ρu for every REM noise is set as 8/255.

D RESISTANCE TO LOW-PASS FILTERING

This section analyzes the resistance of different protective noises against low-pass filters. We first
process each image from the training dataset (can be a clean dataset or protected dataset) with three
low-pass filters, mean filter, median filter, and Gaussian filter, respectively. For every filter, the
shape of the window is set as 3× 3. We then conduct adversarial training on the processed data with
various adversarial training perturbation radii. The experiment results are presented in Table 10.

From the table, we find that when the adversarial training perturbation is small, robust error-
minimizing noise can effectively prevent data from being learned. However, when large adversarial
training perturbation presents, even robust error-minimizing noise becomes ineffective. Neverthe-
less, compared with other types of noise, the protection brought by robust error-minimizing noise is
stronger in most situations. These results demonstrate that robust error-minimizing is more favorable
in protecting data against adversarial learning.

Table 10: Test accuracy (%) of different types of models trained on CIFAR-10 and CIFAR-100 that
are processed by different low-pass filters. The defensive perturbation radius ρu of every defensive
noise is set as 16/255. The adversarial training perturbation radius is set as 8/255.

Dataset Filter Adv. Train.
ρa

Clean EM TAP NTGA REM

CIFAR-10

Mean
2/255 84.25 34.87 82.53 40.26 28.60
4/255 80.47 56.41 78.87 57.42 40.32
8/255 74.74 73.42 72.98 67.69 68.70

Median
2/255 87.04 31.86 85.10 30.87 27.36
4/255 83.87 49.33 82.31 48.50 34.06
8/255 78.34 74.02 76.66 67.63 62.14

Gaussian
2/255 86.78 29.71 85.44 41.85 28.70
4/255 83.33 52.47 81.83 58.14 35.13
8/255 77.30 73.84 75.98 70.06 68.19

CIFAR-100

Mean
2/255 52.42 53.07 51.30 26.49 13.89
4/255 50.89 50.61 50.35 35.46 24.52
8/255 47.73 46.98 46.62 42.03 44.96

Median
2/255 57.69 56.35 55.22 18.14 14.08
4/255 54.77 53.50 53.31 33.05 19.14
8/255 51.09 49.64 48.86 45.13 40.45

Gaussian
2/255 56.64 56.49 55.19 29.05 13.74
4/255 53.44 53.62 53.17 37.39 22.92
8/255 49.75 49.61 48.59 44.55 47.03

21



Published as a conference paper at ICLR 2022

E RESISTANCE TO ADVERSARIAL TRAINING WITH DIFFERENT
PERTURBATION NORMS

This section studies the resistance of different protective noises against adversarial training with
various perturbation norms. Specifically, when perform adversarial training (i.e., Eq. (2)) on the
protected dataset, we set the perturbation norm Eq. (2) as L1-norm or L2-norm. Other training
settings are as same as that presented in Appendix A.4. The experiment results are collected and
presented in Table 11, which shows that robust error-minimizing noise can effectively protect data
from adversarial training in these situations.

Table 11: Test accuracy (%) of different types of models trained on CIFAR-10 and CIFAR-100. The
adversarial training is conducted with different types of perturbation norms. The defensive perturba-
tion radius ρu of every defensive noise is set as 16/255. The adversarial training perturbation radius
is set as 8/255.

Dataset Norm Type Adv. Train.
ρa

Clean EM TAP NTGA REM

CIFAR-10

L1-norm 1000/255 93.61 18.49 53.74 46.78 29.07
3000/255 90.40 69.82 89.65 84.69 55.98

L2-norm 50/255 92.66 44.11 91.30 73.00 32.90
100/255 89.91 82.55 88.70 86.75 62.76

CIFAR-100

L1-norm 1000/255 72.32 72.03 65.13 47.55 14.49
3000/255 67.37 66.77 65.64 64.83 40.84

L2-norm 50/255 70.05 69.52 67.45 65.31 17.43
100/255 65.65 65.25 63.86 63.31 47.16
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