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ABSTRACT

This paper presents the first theoretical guarantee for Bayesian bilevel optimization
(BBO) that we term for the prevalent bilevel framework combining Bayesian opti-
mization at the outer level to tune hyperparameters, and the inner-level stochastic
gradient descent (SGD) for training the model. We prove sublinear regret bounds
suggesting simultaneous convergence of the inner-level model parameters and
outer-level hyperparameters to optimal configurations for generalization capability.
A pivotal, technical novelty in the proofs is modeling the excess risk of the SGD-
trained parameters as evaluation noise during Bayesian optimization. Our theory
implies the inner unit horizon, defined as the number of SGD iterations, shapes the
convergence behavior of BBO. This suggests practical guidance on configuring the
inner unit horizon to enhance training efficiency and model performance.

1 INTRODUCTION

Hyperparameter optimization is a crucial step in the practical implementation of deep learning.
Inappropriate hyperparameter configurations can lead to poor model performance and ineffective
utilization in real-world systems. Bayesian optimization, relying on probabilistic models, is an
effective approach for hyperparameter tuning (Snoek et al. (2012)). It can identify near-optimal
configurations within a few iterations, even in non-convex and derivative-free scenarios (Frazier
(2018)). However, it often focuses solely on hyperparameters while neglecting model parameters.
In contrast, bilevel optimization furnishes an alternative framework that concurrently optimizes
hyperparameters and model parameters in a unified architecture (Colson et al. (2007); Franceschi
et al. (2018)). Specifically, bilevel optimization nests an inner-level problem of model parameter
optimization within an outer-level problem of tuning hyperparameters (Bao et al. (2021).

Bayesian bilevel optimization, merging outer-level hyperparameter tuning with inner-level model
parameter optimization via SGD, shows significant promise in engineering applications. Notably, the
most common application is training neural network parameters with inner SGD, while tuning critical
hyperparameters like learning rates and layer widths with outer Bayesian optimization (Nguyen et al.
(2020);Dewancker et al. (2016);Snoek et al. (2015)). However, the underlying working mechanisms
and theoretical convergence guarantees of this approach remain unclear. Additionally, properly
configuring the inner unit horizon presents challenges. Limited inner SGD iterations can impede
model convergence, reducing the accuracy of outer Bayesian optimization evaluations. Thus, more
Bayesian iterations may be needed to ensure hyperparameter convergence. However, excessive SGD
iterations waste resources, revealing a trade-off between model training and hyperparameter tuning
iterations (Hasanpour et al. (2016);Li et al. (2017)). While multi-fidelity Bayesian optimization
also examines this trade-off ( Nguyen et al. (2020)), it focuses more on utilizing fidelities to reduce
optimization costs. Conversely, our objective is to deduce the optimal inner unit horizon that enables
simultaneous convergence of model parameters and hyperparameters to generalization optima.

At the outer layer, Bayesian optimization is adopted for hyperparameter tuning. We utilize two
acquisition functions: Expected Improvement (EI) and Upper Confidence Bound (UCB). Regarding
EI, Bull (2011) studied its convergence in noise-free settings, while Gupta et al. (2022) recently pro-
vided convergence analysis in noisy settings with the standard predictive mean incumbent. For UCB,
Srinivas et al. (2010) first introduced the method and derived regret bounds scaling as O(

√
TγT ),
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where γT denotes the maximum information gain between T observations and the Gaussian process
model. Chowdhury & Gopalan (2017) further improved it through an enhanced algorithm.

Previous theoretical studies have relied on certain noise assumptions, including bounded (Srinivas
et al. (2010); Nguyen & Gupta (2017)) or sub-Gaussian noise (Chowdhury & Gopalan (2017);
Gupta et al. (2022)). However, these assumptions do not adequately capture the intricacies of
integrating SGD and Bayesian optimization in a bilevel framework. A key limitation in most prior
works is their modeling of the noise {εt}Tt=1 as a martingale difference sequence. This approach
does not align with hyperparameter optimization, where the objective function often represents
generalization performance (Snoek et al. (2012)). Another drawback of prior works (Srinivas et al.
(2010); Chowdhury & Gopalan (2017)) is the use of UCB balancing coefficients that increase rapidly,
which has been shown to be over-exploratory for many practical problems (De Ath et al. (2021)).

To tackle these challenges, a pivotal innovation of our work involves modeling the excess risk of inner-
level SGD-trained parameters as the primary noise source during outer-level Bayesian optimization.
This perspective facilitates more adaptable convergence guarantees for the bilevel setting. Modeling
the SGD excess risk is critical since it builds a connection between the analytical frameworks of
Bayesian optimization and bilevel optimization. The distinct objectives and assumptions of these
two frameworks pose difficulties in ensuring theoretical convergence. Our approach bridges this gap,
enabling a comprehensive convergence analysis for BBO.

By modeling the excess risk of SGD as noise, we derive sublinear regret bounds for BBO, guaranteeing
simultaneous convergence of model parameters and hyperparameters to optimal configurations
for generalization capability. This is accomplished through carefully configuring the inner unit
horizon. By determining the SGD-to-Bayesian iteration trade-off, we optimize this ratio to improve
computational efficiency. Furthermore, we optimize the UCB balancing coefficients based on the
iteration ratio, enhancing flexibility and mitigating excessive exploration resulting from rapidly
escalating coefficients in previous works. Our analyses provide valuable insights into balancing
computational resources in engineering applications. The main contributions of this work include:

1. We provide a novel theoretical analysis of convergence guarantees for generalization performance
within a BBO framework. A key technical innovation is modeling the excess risk of SGD-trained
parameters as evaluation noise in outer-level Bayesian optimization. This tackles theoretical analysis
challenges by bridging the analytical frameworks of Bayesian optimization and bilevel optimization.

2. We establish a regret bound of O(
√
TγT ) for BBO using the EI function, with a noise assumption

more aligned with practical scenarios. Our regret bound achieves savings of
√
γT compared to Gupta

et al. (2022). This achievement is realized by optimizing the ratio of SGD iterations N to Bayesian
optimization iterations T , also offering implementation guidance.

3. We introduce adaptable balancing coefficients βt for the UCB acquisition function. Through
this adaptation, we establish a sublinear regret bound for BBO with the UCB that holds even with
fewer SGD steps, enhancing the flexibility of the inner unit horizon. Additionally, we overcome the
limitations of rapidly increasing coefficients from previous analyses.

2 RELATED WORK

Hyperparameter optimization is crucial for leveraging deep learning’s capabilities (Yang & Shami
(2020); Elsken et al. (2019)). Techniques span Bayesian optimization (Wu et al. (2019); Victoria &
Maragatham (2021)), decision theory (Bergstra & Bengio (2012)), multi-fidelity methods (Li et al.
(2017)), and gradient-based approaches (Maclaurin et al. (2015)). We focus on BBO, exploring
Bayesian optimization and bilevel frameworks’ relevant aspects for hyperparameter tuning.

Bayesian optimization. Bayesian optimization (BO) (Osborne & Osborne (2010); Kandasamy et al.
(2020)) is a prevalent approach for hyperparameter tuning by efficiently exploring and exploiting
hyperparameter spaces (Nguyen et al. (2017)). Gaussian processes (Bogunovic et al. (2018)) are
commonly used as priors in BO to model uncertainty and estimate objective function distributions
(Bro (2010); Wilson et al. (2014)). Among acquisition functions guiding queries in BO, the EI
acquisition function (Jones & Welch (1998); Malkomes & Garnett (2018); Scarlett et al. (2017); Qin
et al. (2017)) is one of the most widely utilized for balancing exploration-exploitation (Nguyen &
Osborne (2020); Zhan & Xing (2020)). Other acquisitions like UCB (Valko et al. (2013)), knowledge
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gradient (Frazier et al. (2009); Scott et al. (2011)), Thompson sampling (Chowdhury & Gopalan
(2017)), and predictive entropy search (Hernández-Lobato et al. (2014)) cater to various scenarios.

Theoretical analyses of Bayesian optimization have been conducted to understand their convergence
properties (Ryzhov (2016);Gupta et al. (2020)). The EI has been studied under specific conditions
(Vazquez & Bect (2010); Bull (2011); Gupta et al. (2021)). Adapting EI for noisy evaluations poses
challenges. Wang & de Freitas (2014) addressed this issue by introducing an alternative incumbent
selection criterion that necessitates an additional global optimization step. Nguyen & Gupta (2017)
used the best-observed value as the incumbent, showing sublinear convergence with a minimum
improvement stopping condition. Gupta et al. (2022) analyzed EI convergence with the standard
predictive mean incumbent. For UCB, Srinivas et al. (2010) established regret bound as O(

√
TγT ).

This approach was subsequently enhanced by ( Janz et al. (2020)) via a modified UCB algorithm.

Bilevel optimization. Bilevel optimization offers an alternative framework for hyperparameter
tuning by concurrently optimizing hyperparameters and model parameters in a nested architecture
(Colson et al. (2007);Franceschi et al. (2018);Bao et al. (2021)). These methods encompass implicit
gradient (Bengio (2000);Luketina et al. (2016);Pedregosa (2016);Lorraine et al. (2020)), hypernet-
works (Lorraine & Duvenaud (2018);MacKay et al. (2019)), unrolled differentiation (Franceschi
et al. (2017);Maclaurin et al. (2015);Bao et al. (2021)), and cross-validation (Bergstra & Bengio
(2012)). Implicit gradient-based methods estimate the model’s performance gradient with respect
to hyperparameters without explicit computation (Lorraine et al. (2020)). Hypernetworks generate
model weights conditioned on hyperparameters. Cross-validation approximates optimal hyperparam-
eters using grid search (Abas et al. (2020)) or random search (Bergstra & Bengio (2012)). Unrolled
differentiation involves optimizing the inner problem over multiple iterations (Fu et al. (2016)).

Remark. While Bayesian and bilevel optimization have advanced theoretically, extending conver-
gence guarantees to BBO remains challenging. Bayesian optimization analyses often disregard the
impact of model parameter convergence on noise during evaluations, instead relying on unrealistic
noise assumptions. Theoretical bilevel optimization analyses struggle to extend to the non-convex,
nonlinear, and derivative-free scenarios inherent to Bayesian optimization.

3 PRELIMINARIES

We consider bilevel optimization involving model parameters and hyperparameters. Let Z , Θ, and
Λ denote the data space, the parameter space, and the hyperparameter space, respectively. Given
hyperparameters λ ∈ Λ, model parameters θ ∈ Θ and distribution D on the data space Z , the
expected error L(λ, θ) is defined as Ez∼D[ℓ(λ, θ, z)], where ℓ : Λ × Θ × Z → R is the bounded
loss function. Our objective is to find the hyperparameter-model parameter pair that minimizes the
expected error over an unknown distribution. This objective entails nesting two search problems:

λ∗ = argmin
λ∈Λ

L (λ, θ∗λ) , where θ∗λ = argmin
θ∈Θ

L (λ, θ) . (3.1)

The inner-level objective is to determine the optimal model parameters, denoted as θ∗λ, for a given
hyperparameter λ. It’s worth noting that the value of θ∗λ depends on the choice of the hyperparameter
λ. At the outer level, the goal is to identify the optimal hyperparameter λ∗, which determines its
associated model parameters θ∗λ∗ , collectively minimizing the expected error. This bilevel structure is
very classic and has been applied in many practical scenarios, such as in Darts (Liu et al. (2018)).

Regret. Similar to Gupta et al. (2022), we employ regret as a convergence measure. We define λ∗

and θ∗λ∗ as the global minimum points, as shown in Equation 3.1. During the t-th iteration at the
outer level, the output hyperparameters are denoted as λ+

t . Simultaneously, at the inner level, using
these hyperparameters λ+

t , we optimize the model parameters through N steps of SGD, denoted
as θN

λ+
t

. The cumulative regret RT at iteration T is calculated as the sum of instantaneous regrets:

RT =
∑T

t=1 rt, where rt = L(λ∗, θ∗λ∗) − L(λ+
t , θ

N
λ+
t

). Our objective is to demonstrate that RT

exhibits almost sublinear growth, specifically limT→∞ RT /T = 0.

3.1 INNER LEVEL OF BBO: MODEL TRAINING BY SGD

At the inner level, our goal is to optimize the model parameters θ by minimizing the expected error.
Given the limited knowledge of data distribution, direct access to this expected error is challenging.

3



Published as a conference paper at ICLR 2024

As a solution, we utilize SGD to optimize the empirical error, serving as a proxy for improving
model parameters. Previous studies, such as Hardt et al. (2016), have shown SGD’s effectiveness
in achieving strong generalization performance. Let Str = {ztri }ni=1 denote the training dataset,
with n representing the number of training samples. Formally, the inner-level problem is defined as:
minθ∈Θ Ltr(λ, θ, Str) = 1

n

∑n
i=1 ℓ (λ, θ, z

tr
i ) . Below, we present some essential definitions.

Definition 1. (Lipschitz, smoothness, and convexity). Let constants K, γ > 0. Consider the function
ℓ : Λ×Θ×Z → R. We define the following properties:

• Lipschitz Continuity: The loss ℓ(λ, θ, z) is said to be K-Lipschitz continuous with respect
to θ if ∥ℓ(λ, θ1, z)− ℓ(λ, θ2, z)∥ ≤ K∥θ1 − θ2∥ for any θ1, θ2, z, λ.

• Smoothness: The loss ℓ(λ, θ, z) is said to be γ-Smooth with respect to θ if ∥∇θℓ(λ, θ1, z)−
∇θℓ(λ, θ2, z)∥ ≤ γ∥θ1 − θ2∥ for any θ1, θ2, z, λ.

• Convexity: The loss ℓ(λ, θ, z) is said to be convex with respect to θ if ℓ(λ, θ1, z) ≥
ℓ(λ, θ2, z) + ⟨∇θℓ(λ, θ2, z), θ1 − θ2⟩ for any θ1, θ2, z, λ.

The above definitions are standard concepts that have been widely adopted in related works such as
Ghadimi & Wang (2018), Ji & Liang (2023), Grazzi et al. (2020), and Ji et al. (2021).
Remark 1. Our BBO theoretical framework can be extended to non-smooth and non-convex
situations. Emphasizing BBO convergence, we’ve mentioned these concepts for clarity. The
proposed structure is highly adaptable for various scenarios. Drawing on insights from Charles
& Papailiopoulos (2018), the framework extends to non-convex situations under a µ-gradient-
dominance condition. For non-convex conditions, Theorem 1 indicates an excess risk of
O
(
(N−1/2µ−1/2 +N−1/4µ−3/4) logN

)
. In addition, we eliminate the smoothness assumption,

adding a term η
√
N to the excess risk bound, where η is the step size. Alternatively, relaxing the

assumption to α-Hölder continuity introduces an additional term O
(
N1− 1

2(1−α) logN
)

to the excess
risk bound. The detailed content is in Appendix F.

3.2 OUTER LEVEL OF BBO: HYPERPARAMETER TUNING BY BO

At the outer level, the model parameters θ∗λ remain fixed, and our objective is to identify the hyperpa-
rameters λ∗ ∈ Λ that minimize the expected error L (λ, θ∗λ). Critically, the function L(λ, θ∗λ) has a
uniquely determined value for each λ. This uniqueness arises because, although θ∗λ = argmin

θ∈Θ
L(λ, θ)

might represent a set when λ is specified, for any θ∗λ in this set, the loss function L(λ, θ∗λ) consistently
yields the unique value min

θ∈Θ
L(λ, θ). Therefore, we may treat L(λ, θ∗λ) as a function solely dependent

on λ, allowing us to conceptualize it as a mapping function from Λ to R.

3.2.1 REGULARITY ASSUMPTIONS

As noted by Scarlett et al. (2017), Bayesian optimization can be viewed from two distinct perspectives:
Bayesian and non-Bayesian. Departing from the standard Bayesian optimization framework, this
work adopts a more agnostic, non-Bayesian setting (Srinivas et al. (2010)). Specifically, we assume
that hyperparameter space Λ is a compact set. We also posit the reward function L(λ, θ∗λ) lies within a
reproducing kernel Hilbert space (RKHS) Hk(Λ) of functions mapping from Λ to R, characterized by
a positive semi-definite kernel function k : Λ×Λ → R. This RKHS Hk(Λ) is determined by its kernel
function k(·, ·) and features an inner product ⟨·, ·⟩k satisfying the reproducing property: L(λ, θ∗λ) =
⟨L(·, θ∗· ), k(λ, ·)⟩k for all L(·, θ∗· ) ∈ Hk(Λ). Hence, the kernel k effectively represents the evaluation
map at each λ ∈ Λ through the RKHS inner product. The RKHS norm, defined as ∥L(·, θ∗· )∥k =√
⟨L(·, θ∗· ), L(·, θ∗· )⟩k. We assume the RKHS norm of the unknown L(·, θ∗· ) is bounded by B.

This assumption suggests the smoothness of the function. This relationship is showcased in the
following example that the inequality |L(λ1, θ

∗
λ1
)−L(λ2, θ

∗
λ2
)| = |⟨L(·, θ∗· ), k(λ1, ·)− k(λ2, ·)⟩| ≤

∥L(·, θ∗· )∥k∥k(λ1, ·)− k(λ2, ·)∥k by the Cauchy-Schwarz inequality.

3.2.2 GAUSSIAN PROCESS (GP) REGRESSION

Bayesian optimization employs GPs as flexible surrogate models for the objective function, leveraging
their versatile priors and tractable posteriors (Rasmussen & Williams (2006)). Initially, we assume
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a GP prior, denoted as GPΛ (0, k(·, ·)), for the unknown reward function L(·, θ∗· ) over Λ, with
k(·, ·) representing the kernel function associated with the RKHS Hk(Λ). The algorithm collects
observations yt = [y1, . . . , yt]

T at points At = {λ1, . . . , λt}, where yt = L
(
λt, θ

∗
λt

)
+ εt, and

εt ∼ N
(
0, σ2

)
denotes independent and identically distributed Gaussian noise for all t. Consequently,

given the history H1:t = {λi, yi}ti=1, let σ2
t (λ) = kt(λ, λ), the posterior distribution over L(·, θ∗· )

remains a GP, denoted as P (Lt(·, θ∗· ) | H1:t−1, λ) = N
(
µt(λ), σ

2
t (λ)

)
, where

µt(λ) = kt(λ)
T
(
Kt + σ2I

)−1
yt, kt (λ, λ

′) = k (λ, λ′)− kt(λ)
T
(
Kt + σ2I

)−1
kt (λ

′) ,

where we define kt(λ) = [k (λ1, λ) . . . k (λt, λ)]
T , Kt = [k (λ, λ′)]λ,λ′∈At

. We assume the kernel
function k is fixed and well-defined with k(x, x) ≤ 1.

3.2.3 ACQUISITION FUNCTION

Acquisition functions are vital in Bayesian optimization as they guide the choice of the next evaluation
point. They quantify the potential improvement of each candidate point. This section explores two
prevalent acquisition functions: UCB (Srinivas et al. (2010)) and EI (Jones & Welch (1998)).

Upper Confidence Bound. The UCB acquisition balances exploration and exploitation by selecting
points with potential improvement while considering evaluation uncertainty. It is defined as:

UCBt(λ) = −µt−1(λ) + βtσt−1(λ), (3.2)

where βt denotes coefficients regulating the trade-off. The −µt−1(λ) term promotes exploitation by
favoring points with lower estimated mean values, thereby increasing the likelihood of improved
outcomes. The σt−1(λ) term drives exploration by prioritizing highly uncertain points.

Expected Improvement. The EI quantifies the expected enhancement in the incumbent relative to
the objective function value. Typically, the incumbent is chosen as the minimum GP mean observed
so far, denoted as µ+

t = minλi∈At
µt−1(λi), consistent with Gupta et al. (2022). The EI is defined as

EIt(λ) = E
[
max{µ+

t − L(λ, θ∗λ), 0} | H1:t

]
. The closed-form expression for EI can be derived as:

EIt(λ) = (µ+
t − µt−1(λ))Φ

(
µ+
t − µt−1(λ)

σt−1(λ)

)
+ σt−1(λ)ϕ

(
µ+
t − µt−1(λ)

σt−1(λ)

)
, if σt−1(λ) > 0,

where ϕ is the standard normal p.d.f. and Φ is the c.d.f. When σt−1(λ) = 0, we set EIt(λ) = 0.

4 MAIN RESULTS

This section presents theoretical analyses of the convergence guarantees for BBO. Specifically, We
derive an excess risk bound for the inner-level SGD-trained model parameters. We also establish
regret bounds for the outer-level Bayesian optimization that ensures simultaneous convergence of
model parameters and hyperparameters. The BBO algorithms are detailed in the Appendix. Based on
the convergence analysis, we characterize the trade-off between model training and tuning.

4.1 INNER LEVEL OF BBO: EXCESS RISK BOUND

First, we present the excess risk bound for inner-level optimization.
Theorem 1. Suppose that the function ℓ(λ, θ, z) is K-Lipschitz continuous, γ-smooth and convex
with respect to θ, uniformly bounded by M . We perform SGD with step sizes ηj = η ≍ 1√

N
≤ 2/γ

on a sample Str drawn from the distribution D at the inner level. This involves performing N steps
and obtaining the output result θNλ . Let Sval =

{
zvali

}m
i=1

represent the validation set drawn from
the distribution D. The validation error is defined as Lval(λ, θNλ , Sval) = 1

m

∑m
i=1 ℓ(λ, θ

N
λ , zvali ).

Choose N ≍ n ≍ m. Then, with a probability of at least 1− δ, we have:

Lval(λ, θNλ , Sval)− L(λ, θ∗λ) = O
(
N− 1

2 log3/2 N
)

The complete expression is given by Lval(λ, θNλ , Sval) − L(λ, θ∗λ) ≤ φ(N)N− 1
2 , where φ(N) =

O
(
K2 logN log(1/δ) +M

√
log(1/δ) +M

√
log(2/δ) + log3/2(N/δ)

)
.
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Remark 2. In outer-level Bayesian optimization, the objective is to minimize the expected error
L(λ, θ∗λ). However, as the data distribution is unknown, L(λ, θ∗λ) cannot be evaluated directly.
Instead, the validation loss Lval(λ, θNλ , Sval) serves as a proxy to observe L(λ, θ∗λ). Specifically,
given hyperparameters λ and model parameters θNλ from inner-level SGD, the difference between
Lval(λ, θNλ , Sval) and L(λ, θ∗λ) represents noise when evaluating L(λ, θ∗λ) in outer optimization.
Analyzing the convergence of this excess risk bound Lval(λ, θNλ , Sval)− L(λ, θ∗λ) is of interest.

4.2 OUTER LEVEL OF BBO: REGRET BOUND

This section presents regret bounds for the outer-level Bayesian optimization. The subsequent
lemma delineates the concentration of the posterior mean around the true objective function, thereby
constituting the theoretical basis for the ensuing regret analysis. Notably, as explicated in Section 3.2,
L(λ, θ∗λ) may be considered as functions mapping from Λ to R.
Lemma 2. let L(·, θ∗· ) : Λ → R be a member of the RKHS of real-valued functions on Λ with kernel
k, with RKHS norm bounded by B. Consider the noise term εt = Lval

(
λt, θ

N
λt
, Sval

)
− L

(
λt, θ

∗
λt

)
,

then, with probability at least 1− δ, the following holds for all λ ∈ Λ and t ≥ 1:

|µt(λ)− L(λ, θ∗λ)| ≤
√

B2 + σ−2tφ2(N)N−1σt(λ).

Subsequently, we introduce the definition of maximum information gain, which will prove useful in
bounding the cumulative regret.
Definition 2. Given the set AT = {λ1, · · · , λT } ⊂ Λ, let LAT

(·, θ∗· ) = [L (λ, θ∗λ)]λ∈AT
and

yAT
= LAT

(·, θ∗· )+εAT
, where εAT

∼ N
(
0, σ2I

)
. With I (· ; ·) denoting the mutual information,

the maximum information gain after T iterations is defined as γT = maxAT∈Λ I (yAT
;LAT

(·, θ∗· )).

Notably, the maximum information gain γT differs under various kernel selections. According to the
results from Srinivas et al. (2010), for the Squared Exponential kernel, γT = O(logd+1(T )), whereas
based on the findings in Vakili et al. (2021), for the Matérn-ν kernel, γT = Õ(T

d
2ν+d ).

4.2.1 REGRET BOUND FOR BBO WITH EI FUNCTION

In the ensuing analysis, we establish the primary theoretical contribution of this work, specifically,
the regret bound for Bayesian bilevel optimization with the EI acquisition function. For the sake of
clarity in notation, we define the auxiliary function τ(z) = zΦ(z) + ϕ(z).
Theorem 3. Let δ ∈ (0, 1). Assume that the true underlying function L(λ, θ∗λ) in terms of λ
lies in the RKHS Hk(Λ) associated with the kernel k (λ, λ′). Furthermore, consider the noise
term εt = Lval

(
λt, θ

N
λt
, Sval

)
− L

(
λt, θ

∗
λt

)
. Specifically, assume that ∥L (·, θ∗· )∥k ≤ B and

define βt =
√
B2 + σ−2tφ2(N)N−1. By executing algorithm 1 with EI acquisition and the prior

GPΛ (0, k(·, ·)), with probability at least 1− δ, the cumulative regret is bounded as:

RT = O
(

β2
T

√
TγT

τ (βT )− βT
+ TN− 1

2

)
,

If we select N ≍ T , we attain:
RT = O

(√
TγT

)
Proof Sketch of Theorem 3. Adapting Bayesian regret analysis to the bilevel optimization context
with noise induced by SGD poses a central challenge. To bound the cumulative regret RT , the initial
step involves constraining the instantaneous regrets rt, defined as rt = L

(
λ+
t , θ

N
λ+
t

)
− L (λ∗, θ∗λ∗).

Each instantaneous regret rt can be decomposed into three terms: rt = L
(
λ+
t , θ

N
λ+
t

)
−L

(
λ+
t , θ

∗
λ+
t

)
+

L
(
λ+
t , θ

∗
λ+
t

)
− µ+

t + µ+
t − L (λ∗, θ∗λ∗), where µ+

t denotes the incumbent.

The first term, L
(
λ+
t , θ

N
λ+
t

)
− L

(
λ+
t , θ

∗
λ+
t

)
, can be bounded by applying concentration inequalities

and the excess risk result from Theorem 1, yielding an upper bound of O(N−1/2 logN). For the
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second term, L
(
λ+
t , θ

∗
λ+
t

)
− µ+

t , the bound is given by βt

(√
2π (βt + 1)σt−1 (λt) +

√
2πIt (λt)

)
,

where It(λt) = max
{
µ+
t − L

(
λt, θ

∗
λt

)
, 0
}

. To bound the last term µ+
t −L (λ∗, θ∗λ∗), our approach

involves initially establishing lower and upper bounds on the EI acquisition value by leveraging the
properties of τ(z). A pivotal technical challenge arises in bounding the discrepancy between the GP
posterior mean µt(·) and the true function value L(·, θ∗· ) at λt and λ∗, which requires considering the
SGD-induced noise as detailed in Lemma 2. The optimality of λt from maximizing the EI acquisition
leads to an upper bound given by: ( 1+βt

τ(βt)−βt
)(It(λt) + (βt + 1)σt−1(λt)), as shown in Lemma 15.

Bounding and summing the three constituent terms allows us to derive the cumulative regret RT .
Employing auxiliary results related to the cumulative sums of improvement terms It(λt) and predic-
tive variances σt(λt), as documented in Gupta et al. (2022) and Chowdhury & Gopalan (2017), and
setting N ≍ T , we attain the bound RT = O(

√
TγT ).

Comparision with previous works. Through appropriate selection of N , our regret bound is
denoted as RT = O(

√
TγT ). In contrast, Nguyen & Gupta (2017) established a regret bound of

O(γT
√
T log T ) for EI with the best-observed value y+ as the incumbent. They further introduced

an additional assumption constraining the variance function values to exceed a lower bound κ. Thus,
their bound escalates markedly as κ → ∞. The work most analogous to ours is Gupta et al. (2022),
which also utilizes EI with the standard incumbent µ+

t = minλi∈At
µt−1(λi), and possesses regret

bounds of RT = O(γT
√
T ). Our regret bound thus achieves theoretical savings of

√
γT .

Furthermore, It’s worth noting that Gupta et al. (2022) assumed conditional R-sub-Gaussian noise,
while Nguyen & Gupta (2017) assumed bounded noise. Additionally, both studies assumed that the
noise sequence {εt}Tt=1 constitutes a martingale difference sequence, signifying that E[εt|ε<t] = 0
for all t ∈ T . In comparison, our assumption regarding the noise εt, denoted as the excess risk of
the inner-level SGD-optimized model parameters, is εt = Lval(λt, θ

N
λt
, Sval) − L(λt, θ

∗
λt
). The

conditional expectation E [εt | ε<t] = 0 does not hold here. This is because θNλt
depends on the

training set Str while θ∗λt
does not. This modeling more aligns closely with practical scenarios when

leveraging Bayesian optimization for hyperparameter tuning.

Moreover, prior research has primarily restricted its regret definition to hyperparameters. In contrast,
as outlined in Section 3, our approach uniquely defines regret to include both model parameters and
hyperparameters. This broader view adds complexity to our theoretical analysis by necessitating the
establishment of a sublinear regret bound. Our derived bound offers theoretical validation for the
convergence of both model parameters and hyperparameters towards their optimal values.

Practical insights: Inner Unit Horizon as the Same Order of Outer-Level Iterations.. By
judiciously selecting the number of inner-level SGD optimization iterations as N ≍ T , we attained
the regret bound RT = O(

√
TγT ). This further provides practical guidance into better balancing the

iterations between inner-level SGD and outer-level Bayesian optimization.

Specifically, if the number of SGD iterations N is substantially less than T , such as O(
√
T ), the

regret becomes RT = O(T
√
γT /(τ(T

1/4)−T 1/4)). Since γT monotonically increases and τ(z)−z

monotonically decreases to zero, when T → ∞, we have γT → ∞ and τ(T 1/4) − T 1/4 → 0.
Consequently, RT /T = O(

√
γT /(τ(T

1/4)− T 1/4)) will exhibit rapid growth. Indeed, this suggests
that having too few inner SGD iterations results in a faster increase in the regret bound. In contrast,
if N significantly exceeds T , then βT → B2, maintaining a constant order instead of diminishing.
Hence, the regret RT = O(

√
TγT ) remains unchanged, indicating unnecessary SGD iterations being

performed and wasted resources.

In summary, the optimal inner unit horizon N for convex functions scales as N ≍ T . Moreover, we
demonstrate in Section F.1 that for non-convex functions, the optimal N ≍ T 2. This choice of N
strikes an effective balance between SGD and Bayesian optimization iterations.

4.2.2 REGRET BOUND FOR BBO WITH THE UCB FUNCTION

Next, we establish the regret bound for the Bayesian bilevel optimization with the UCB acquisition.
Theorem 4. Let δ ∈ (0, 1). Assume that the true underlying function L(λ, θ∗λ) in terms of λ
lies in the RKHS Hk(Λ) associated with the kernel k (λ, λ′). Additionally, consider the noise
term εt = Lval

(
λt, θ

N
λt
, Sval

)
− L

(
λt, θ

∗
λt

)
. Specifically, assume that ∥L (·, θ∗· )∥k ≤ B and let
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βt =
√

B2 + σ−2tφ2(N)N−1. By running algorithm 2 with βt and the prior GPΛ (0, k(·, ·)), with
probability at least 1− δ, the cumulative regret is bounded as:

RT = O
(√

(B2 + TN−1)TγT + TN− 1
2

)
If we select N ≍ T , we can obtain that:

RT = O
(√

TγT

)
Proof Sketch of Theorem 4. This proof approach is similar to Theorem 3, but employs a
different acquisition function. The instantaneous regret rt can be decomposed into two terms:
rt = L

(
λ+
t , θ

N
λ+
t

)
− L

(
λ+
t , θ

∗
λ+
t

)
+ L

(
λ+
t , θ

∗
λ+
t

)
− L (λ∗, θ∗λ∗). The first term, identical to the

first term in Theorem 3, can be established using the same methodology, yielding the bound of
O(N−1/2 logN). Through the utilization of Lemma 2 and the selection of λ+

t as specified in Algo-
rithm 2, we can demonstrate that the second term can be upper-bounded as follows: 2βtσt−1

(
λ+
t

)
.

By summing the upper bounds of the two terms mentioned above and taking into account that∑T
t=1 σt−1

(
λ+
t

)
= O

(√
TγT

)
as demonstrated in Chowdhury & Gopalan (2017), the final result

can be deduced: RT = O
(√

(B2 + TN−1)TγT + TN−1/2
)

with probability at least 1− δ. By

selecting N ≍ T , we can further establish that: RT = O
(√

TγT
)
.

Comparision with previous works. For the UCB, βt plays a crucial role in balancing exploration
and exploitation. In previous work, Srinivas et al. (2010) introduced the GP-UCB algorithm with
βt = (2B2 + 300γt log

3(t/δ))1/2, while a slightly improved variant, the IGP-UCB algorithm,
presented in Chowdhury & Gopalan (2017), used βt = B + R

√
2 (γt−1 + 1 + ln(1/δ)). In both

cases, the balancing coefficient βt tends to increase rapidly with t, especially when the Matérn-ν
kernel is used. In practice, this leads to numerous unnecessary explorations in Bayesian optimization
(De Ath et al. (2021)). However, in our work, we have chosen the balancing coefficients as βt =√

B2 + σ−2tφ2(N)N−1. As a result, we can appropriately adjust the ratio of the number of
iterations N in the inner level to the number of iterations T in the outer level to control βt.

Furthermore, by choosing N ≍ T we can obtain a regret bound O
(
B
√
TγT

)
, which is tighter

than the regret bound O
(
B
√
TγT + γT

√
T
)

associated with Chowdhury & Gopalan (2017). Our
assumptions regarding noise are also more aligned with reality. This approach enables us to achieve
an improved balance between exploration and exploitation in Bayesian optimization. Moreover,
our regret bound provides theoretical assurance for the convergence of both model parameters and
hyperparameters to their respective optima, whereas Chowdhury & Gopalan (2017) only guarantees
the convergence of hyperparameters.

Practical insights: Flexibility of the Inner Unit Horizon. A choice of N ≍ T is also reasonable for
the UCB function. If N is significantly larger than T , the coefficient B2 + TN−1 tends to approach
B2, remaining constant rather than approaching zero, and the regret bound remains RT = O(

√
TγT ),

showing no change. This implies that inner-level SGD involves many futile iterations.

However, it’s important to note that, unlike the situation for the EI acquisition function mentioned
above, if N is significantly smaller than T , for instance, N = O(

√
T ), then the regret bound becomes

RT = O(T 3/4√γT ). For the SE kernel, where γT = O(logd+1(T )), the regret bound RT still
exhibits sublinear growth. In the case of the Matérn-ν kernel, with γT = Õ(T

d
2ν+d ), when 2ν > d,

the regret bound RT can also exhibit sublinear growth.

In summary, the UCB acquisition offers greater flexibility in choosing the number of iterations for
inner-level SGD iterations compared to EI. With fewer SGD iterations, the noise εt in function
evaluations increases. Therefore, our theoretical analysis shows that UCB is more resilient to the
influence of noise compared to EI, which aligns with the experimental findings in Hu et al. (2021).

5 EXPERIMENTS

We conducted numerical results in this section. In the inner level, we employ SGD to train a CNN
with two convolutional layers and one fully connected layer on the MNIST dataset. In the outer level,
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Bayesian Optimization uses the EI and UCB functions to adjust hyperparameters like the learning
rate. We fix the number of iterations for the outer-level BO and compare the number of iterations for
the inner-level SGD under different scenarios, along with their respective convergence outcomes, as
detailed in the table below. We initially present the results when utilizing the EI acquisition function.

(1) Setting the number of outer Bayesian optimization steps as 20.

SGD Iteration 100 500 1,000 2,000 3,000
Performance 3.15± 0.75 2.73± 0.03 2.70± 0.04 2.43± 0.12 2.46± 0.13

(2) Setting the number of outer Bayesian optimization steps as 40.

SGD Iteration 500 1,000 2,000 3,000 4,000
Performance 3.45± 0.85 2.42± 0.23 2.44± 0.55 2.39± 0.09 2.51± 0.09

(3) Setting the number of outer Bayesian optimization steps as 60.

SGD Iteration 1,000 2,000 3,000 4,000 6,000
Performance 2.58± 0.58 2.40± 0.35 2.34± 0.28 2.10± 0.08 2.25± 0.17

The experiments are aligned with our theoretical analysis. Fixing the Bayesian optimization’s iteration
number, the loss function decreases as the SGD steps rise initially, while suboptimal hyperparameters
cause high loss. Specifically, with only 20 outer-level iterations, excessively low tuning led to high
loss even at high SGD steps. For 40 outer-level iterations and over 1,000 SGD steps, we see signs of
overtraining and inadequate tuning. For 60-step outer-level iterations, the loss at over 4,000 SGD
steps is less than in the 40-step setting, due to more adequate tuning. Yet, insufficient tuning still
occurs at 6,000 SGD steps under the 60-step setting.

Then we present the results when utilizing the UCB acquisition function.

(1) Setting the number of outer Bayesian optimization steps as 20.

SGD Iteration 100 500 1,000 2,000 3,000
Performance 2.93± 0.60 2.59± 0.47 2.49± 0.34 2.39± 0.07 2.31± 0.13

(2) Setting the number of outer Bayesian optimization steps as 40.

SGD Iteration 500 1,000 2,000 3,000 4,000
Performance 2.56± 0.53 2.34± 0.45 2.29± 0.29 2.27± 0.30 2.22± 0.16

(3) Setting the number of outer Bayesian optimization steps as 60.

SGD Iteration 1,000 2,000 3,000 4,000 6,000
Performance 2.57± 0.27 2.26± 0.28 2.23± 0.17 2.19± 0.19 2.20± 0.10

When utilizing the UCB acquisition function for the outer Bayesian optimization, while keeping
the number of steps for the outer Bayesian optimization fixed, we gradually increase the number
of iterations for the inner SGD optimization. We can observe that initially, as the number of SGD
iterations increases, the loss decreases gradually. However, when the number of SGD steps becomes
excessively large, the decrease in loss tends to plateau.

6 CONLUSION

Through solid analysis, we derive sublinear regret bounds guaranteeing simultaneous convergence of
model parameters and hyperparameters to optimal configurations for generalization capability and
providing insights into optimally balancing computations between model training and hyperparameter
tuning. This theoretical foundation demonstrates the potential of Bayesian bilevel optimization
for non-convex, derivative-free hyperparameter tuning. Future work may enrich this area through
empirical studies, alternate acquisitions, and extensions to neural networks.
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A BAYESIAN BILEVEL OPTIMIZATION ALGORITHMS

In this section, we will present the algorithms employed in this study. To commence, we will introduce
Bayesian bilevel optimization utilizing the expected improvement acquisition function as follows.

Algorithm 1: Bayesian bilevel Optimization with EI acquisition
Input: Place a Gaussian process prior on L(λ, θ∗λ)

1 for t = 0, 1, ..., T − 1 do
2 for j = 0, 1, ..., N − 1 do
3 Update model parameters using SGD: θj+1

λt
= θjλt

− ηj∇θℓ(λt, θ
j
λt
, ztrjt )

4 end
5 Observe yt = Lval(λt, θ

N
λt
, Sval) and Update posterior distribution on L using all data.

6 Select the next hyperparameter λt+1 by maximizing the acquisition function EIt(λ) with the
incumbent µ+

t = minλi∈At
µt−1 (λi).

7

λt+1 = argmaxλ E
[
max

(
µ+
t − L (λ, θ∗λ) , 0

)
| H1:t

]
8 end
9 Return points λ+

t = argmin1≤i≤t µt−1 (λi) and θN
λ+
t

for all 1 ≤ t ≤ T .

Next, we will introduce Bayesian bilevel optimization using the upper confidence bound acquisition
function.

Algorithm 2: Bayesian bilevel optimization with UCB acquisition
Input: Place a Gaussian process prior on L(λ, θ∗λ)

1 for t = 0, 1, ..., T − 1 do
2 for j = 0, 1, ..., N − 1 do
3

θj+1
λt

= θjλt
− ηj∇θℓ

(
λt, θ

j
λt
, ztrjt

)
.

4 end
5 yt represents the observation of L(λt, θ

∗
λt
), where yt = Lval(λt, θ

N
λt
, Sval).

6 Update the posterior probability distribution on L using all available data.
7 Select the next hyperparameter λ+

t+1 by maximizing the acquisition function UCBt(λ).

λt+1 = argmaxλ (−µt(λ) + βt+1σt(λ))

8 end
9 Return points λ+

t = λt and θN
λ+
t

for all 1 ≤ t ≤ T .

B PROOF OF THEOREM 1

At the inner level, we keep the hyperparameters λ fixed and treat them as constants, while we employ
SGD to train and optimize the model parameters θ. To establish an upper bound on the excess risk
Lval(λ, θNλ , Sval)− L(λ, θ∗λ), we introduce an effective decomposition method:
Lval

(
λ, θNλ , Sval

)
− L (λ, θ∗λ) = Lval

(
λ, θNλ , Sval

)
− Ltr

(
λ, θNλ , Str

)︸ ︷︷ ︸
Term 1

+ Ltr
(
λ, θNλ , Str

)
− Ltr

(
λ, θ∗λ, S

tr
)︸ ︷︷ ︸

Term 2

+Ltr
(
λ, θ∗λ, S

tr
)
− L (λ, θ∗λ)︸ ︷︷ ︸

Term 3

. (B.1)

Next, we proceed to upper bound the excess risk by individually upper bounding Term 1, Term 2, and
Term 3.

Upper Bounding Term 1

Directly upper bounding Term 1 is challenging because there is no direct connection between
the validation error Lval

(
λ, θNλ , Sval

)
and the training error Ltr

(
λ, θNλ , Str

)
. However, we can
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observe that both the validation set Sval and the training set Str are drawn from the distribution
D. Therefore, by using the expected error L(λ, θNλ ) = Ez∼D[ℓ(λ, θ

N
λ , z)] as a bridge, we can

establish a connection between the validation error and training error. This allows us to decompose
Lval

(
λ, θNλ , Sval

)
− Ltr

(
λ, θNλ , Str

)
into:

Lval
(
λ, θNλ , Sval

)
− Ltr

(
λ, θNλ , Str

)
= Lval

(
λ, θNλ , Sval

)
− L(λ, θNλ )︸ ︷︷ ︸

Term 4

+L(λ, θNλ )− Ltr
(
λ, θNλ , Str

)︸ ︷︷ ︸
Term 5

. (B.2)

Lemma 5. Let the validation error be Lval(λ, θNλ , Sval) = 1
m

∑m
i=1 ℓ(λ, θ

N
λ , zvali ). Similarly, let the

training error be Ltr(λ, θNλ , Str) = 1
n

∑n
i=1 ℓ(λ, θ

N
λ , ztri ). By choosing N ≍ n ≍ m and η ≍ N− 1

2 ,
we can establish that, with a probability of at least 1− δ,

Lval
(
λ, θNλ , Sval

)
− Ltr

(
λ, θNλ , Str

)
= O

(
N− 1

2 logN
)
.

To prove Lemma 5, we provide the definition of stability below, along with some useful concentration
inequalities.

We use θ(S) to represent the model obtained when applying an algorithm A to the dataset S. Note that
we omit the dependency of the notation on A, which should be clear from the context. Additionally,
we omit the hyperparameters λ since we keep them fixed and treat them as constants at the inner
level. Two datasets are considered neighboring datasets if they differ by only one example.

Definition 3. (Uniform Stability Bousquet & Elisseeff (2002)) A randomized algorithm A is ϵ
uniformly stable if for all neighboring datasets S, S′ ∈ D we have supz [ℓ (θ(S), z)− ℓ (θ(S′), z)] ≤
ϵ.

Lemma 6 (McDiarmid’s Inequality). Consider independent random variables Z1, · · · , Zn ∈ Z and
a mapping ϕ : Zn → R. If, for all i ∈ {1, · · · , n}, and for all z1, · · · , zn, z′i ∈ Z , the function ϕ
satisfies

|ϕ (z1, · · · , zi−1, zi, zi+1, · · · , zn)− ϕ (z1, · · · , zi−1, z
′
i, zi+1, · · · , zn)| ≤ c,

then,

P (|ϕ (Z1, · · · , Zn)− Eϕ (Z1, . . . , Zn) ≥ t|) ≤ 2 exp

(
−2t2

nc2

)
.

Furthermore, for any δ ∈ (0, 1) the following inequality holds with probability at least 1− δ

|ϕ (Z1, . . . , Zn)− E [ϕ (Z1, . . . , Zn)]| ≤
c
√

n log(2/δ)√
2

.

Lemma 7 (Chernoff’s Bound (Wainwright (2019)). Let X1, . . . , Xt be independent random variables
taking values in {0, 1}. Let X =

∑t
j=1 Xj and µ = E[X]. Then for any δ̃ > 0 with probability

at least 1 − exp
(
− µδ̃2/(2 + δ̃)

)
we have X ≤ (1 + δ̃)µ. Furthermore, for any δ ∈ (0, 1) with

probability at least 1− δ we have

X ≤ µ+ log(1/δ) +
√
2µ log(1/δ).

Lemma 8 (Generalization Error (Bousquet et al. (2020))). We employ θ(S) to represent the model
obtained when applying algorithm A to the dataset S. Under the uniform stability condition (3) with
parameter ϵ and the uniform boundedness of the loss function ℓ(·, ·) ≤ M , we have that for any
δ ∈ (0, 1), with a probability of at least 1− δ:

∣∣L (θ(S))− Ltr (θ(S))
∣∣ = O

(
ϵ log n log

(
1

δ

)
+M

√
n−1 log

(
1

δ

))
.

Proof of lemma 5. For the sake of brevity in the proof, we omit the hyperparameters λ. Consider two
samples, S and S′, each consisting of n data points, differing by only a single example. As we run
SGD on these samples, we generate gradient updates θ1, . . . , θN and θ′1, . . . , θ

′
N for samples S and
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S′, respectively. Now, let’s assume, without loss of generality, that the difference between S and S′

is solely attributed to the first example. Applying the Lipschitz condition to ℓ(·, z), we obtain:

|ℓ (θN , z)− ℓ (θ′N , z)| ≤ KδN , (B.3)

where δN = ∥θN − θ′N∥. It’s worth noting that during the j-th iteration, there is a probability of
(n − 1)/n that the sample selected by SGD is the same in both sets S and S′. The properties of
convexity and γ-smoothness, as outlined in (Hardt et al. (2016)), establish that for any pair of θ and
θ′, the following holds:

⟨∇ℓ(θ, z)−∇ℓ(θ′, z), θ − θ′⟩ ≥ 1

γ
∥∇ℓ(θ, z)−∇ℓ(θ′, z)∥2.

In the event that jt is not equal to 1, based on the inequality ηj ≤ 2/γ we can deduce that:∥∥θj+1 − θ′j+1

∥∥2
=
∥∥θj − θ′j

∥∥2 − 2ηj
〈
∇ℓ (θj , zjt)−∇ℓ

(
θ′j , z

′
jt

)
, θj − θ′j

〉
+ η2j

∥∥∇ℓ (θj , zjt)−∇ℓ
(
θ′j , z

′
jt

)∥∥2
≤
∥∥θj − θ′j

∥∥2 − (2ηj
γ

− η2j

)∥∥∇ℓ (θj , zjt)−∇ℓ
(
θ′j , z

′
jt

)∥∥2
≤
∥∥θj − θ′j

∥∥2 . (B.4)

In the scenario where the probability of selecting a different example is 1/n, i.e., jt = 1, we can
utilize the triangle inequality and the previously mentioned inequality to establish the following:∥∥θj+1 − θ′j+1

∥∥
= ∥θj − ηj∇ℓ (θj , zjt)−

(
θ′j − ηj∇ℓ

(
θ′j , zjt

)
)∥+ ηj∥∇ℓ

(
θ′j , z

′
jt

)
−∇ℓ

(
θ′j , zjt

)
∥

≤
∥∥θj − θ′j

∥∥+ 2ηjK.

By merging the two cases mentioned above, we can conclude that for every j:∥∥θj+1 − θ′j+1

∥∥ ≤ ∥θj − θ′j∥+ 2ηjKI[jt=1],

where I represents the indicator function. By solving the recursive inequality, we obtain:

∥∥θj+1 − θ′j+1

∥∥ ≤ 2K

N∑
j=1

ηjI[jt=1] ≤ 2Kη

N∑
j=1

I[jt=1]. (B.5)

Invoking Lemma 7 whereby Xj = I[jt=1] and µ = N/n, we obtain the subsequent inequality that
holds with a probability of at least 1− δ:

N∑
j=1

I[jt=1] ≤ N/n+ log(1/δ) +
√

2Nn−1 log(1/δ).

Consequently, with a probability at least 1− δ, the following inequality is satisfied:∥∥θj+1 − θ′j+1

∥∥ ≤ 2Kη(N/n+ log(1/δ) +
√
2Nn−1 log(1/δ)).

Then we derive the ensuing inequality with a probability of at least 1− δ:

∥θ(S)− θ(S′)∥ ≤ 2Kη(N/n+ log(1/δ) +
√

2Nn−1 log(1/δ)).

Substituting the inequality back into Eq. B.3, we arrive at the following result holding with a
probability of at least 1− δ:

|ℓ (θ(S); z)− ℓ (θ(S′); z)| ≤ 2K2η(N/n+ log(1/δ) +
√

2Nn−1 log(1/δ)). (B.6)

Subsequently, we can bound Term 5 by applying lemma 8 with a stability parameter ϵ = 2K2η(N/n+

log(1/δ) +
√
2Nn−1 log(1/δ)). With a probability of at least 1− δ, we obtain:

L
(
λ, θNλ

)
− Ltr

(
λ, θNλ , Str

)
= O

(
ηNn−1 log n log (1/δ) +M

√
n−1 log (1/δ)

)
. (B.7)
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Next, we begin by addressing Term 4, denoted as Lval(λ, θNλ , Sval) − L(λ, θNλ ), where Sval =
{zvali }mi=1. Notably, θNλ is obtained by training on Str, which is independent of Sval. Then, we have:

L
(
λ, θNλ

)
= E[Lval

(
λ, θNλ , Sval

)
].

Furthermore, since ℓ(λ, θ, z) is uniformly bounded by M , we can observe that for Sval and Sval′

differing by only one example, we have

Lval
(
λ, θNλ , Sval

)
−Lval

(
λ, θNλ , Sval′

)
=

1

m

(
m∑
i=1

ℓ
(
λ, θNλ , zvali

)
−

m∑
i=1

ℓ
(
λ, θNλ , zval

′

i

))
≤ M

m
.

Then we can apply lemma 6 with c = M
m to obtain, with probability at least 1− δ,

|Lval
(
λ, θNλ , Sval

)
− L

(
λ, θNλ

)
| ≤ M

√
1

2m
log(2/δ). (B.8)

By substituting inequalities B.8 and B.7 into equation B.2, we can establish that, with a probability of
at least 1− δ,

Lval
(
λ, θNλ , Sval

)
− Ltr

(
λ, θNλ , Str

)
= O

(
ηNn−1 log n log(1/δ) +M

√
n−1 log(1/δ) +M

√
m−1 log(2/δ)

)
.

By the choice of N ≍ n ≍ m and η ≍ N− 1
2 , we can deduce that, with a probability of at least 1− δ,

Lval
(
λ, θNλ , Sval

)
− Ltr

(
λ, θNλ , Str

)
= O

(
N− 1

2 logN
)
. (B.9)

Upper Bounding Term 2

We introduce the following lemma to bound Term 2, which quantifies the optimization error.
Lemma 9 (Optimization Error (Lei & Tang, 2018)). Assuming that the function ℓ(θ) is convex and
L-Lipschitz continuous with respect to θ, we run SGD with step sizes ηt = η ≍ 1√

N
. Then, with a

probability of at least 1− δ, we can establish that:

Ltr(θ)− inf
θ
Ltr(θ) = O(N− 1

2 log
3
2 (N/δ)).

Lemma 10. Select δ ∈ (0, 1). Set the step size of SGD as ηt = η ≍ 1√
N

. Then, with a probability of
1− δ, we achieve:

Ltr
(
λ, θNλ , Str

)
− Ltr

(
λ, θ∗λ, S

tr
)
= O

(
N− 1

2 log
3
2 (N/δ)

)
.

Proof of Lemma 10. We should take note that, based on equality 3.1, with θ∗λ = argmin
θ∈Θ

L(λ, θ), we

can derive
Ltr

(
λ, θ∗λ, S

tr
)
≥ inf

θ
Ltr(λ, θ, Str).

From lemma 9, we can obtain

Ltr
(
λ, θNλ , Str

)
− inf

θ
Ltr(λ, θ, Str) = O

(
N− 1

2 log
3
2 (N/δ)

)
.

Combining the above two inequalities, we derive

Ltr
(
λ, θNλ , Str

)
− Ltr

(
λ, θ∗λ, S

tr
)

= Ltr
(
λ, θNλ , Str

)
− inf

θ
Ltr

(
λ, θ, Str

)
+ inf

θ
Ltr

(
λ, θ, Str

)
− Ltr

(
λ, θ∗λ, S

tr
)

= O
(
N− 1

2 log
3
2 (N/δ)

)
.
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Upper Bounding Term 3
Lemma 11. Choose a value for δ from the interval (0, 1). Then, with a probability of 1 − δ, we
obtain:

Ltr
(
λ, θ∗λ, S

tr
)
− L (λ, θ∗λ) = O

(
N− 1

2

)
.

Proof of lemma 11. It is worthy of note that θ∗λ is independent of Str. Moreover, as ℓ(λ, θ, z) is
uniformly bounded by M, we can discern that for Str and Str′ differing by only one example, there
exists:

Ltr
(
λ, θ∗λ, S

tr
)
− Ltr

(
λ, θ∗λ, S

tr′
)
=

1

n

(
n∑

i=1

ℓ
(
λ, θ∗λ, z

tr
i

)
−

n∑
i=1

ℓ
(
λ, θ∗λ, z

tr′

i

))
≤ M

n
.

Consequently, we can invoke Lemma 6 with c = M
n to attain, with a probability of at least 1− δ:

Ltr
(
λ, θ∗λ, S

tr
)
− L (λ, θ∗λ) ≤ M

√
1

2n
log(2/δ).

By the choice of N ≍ n, we can deduce that, with a probability of at least 1− δ,

Ltr
(
λ, θ∗λ, S

tr
)
− L (λ, θ∗λ) = O

(
N− 1

2

)
.

Through the aforementioned handling of Terms 1, 2, and 3, we can ultimately derive the excess risk
bound that we are interested in.

Proof of Theorem 1. Combining Term 1 in lemma 5, Term 2 in lemma 10 and Term 3 in lemma 11
with the decomposition B.1, by the choice of N ≍ n ≍ m and η ≍ N− 1

2 , we can deduce that, with a
probability of at least 1− δ,

Lval (λ, θNλ , Sval )− L (λ, θ∗λ) =

O
((

K2 logN log(1/δ) +M
√

log(1/δ) +M
√
log(2/δ) + log3/2(N/δ)

)(
N−1/2

))
When we neglect constants like K,M , and δ, we can derive the result:

Lval
(
λ, θNλ , Sval

)
− L (λ, θ∗λ) = O

(
N− 1

2 log
3
2 N

)
.

The proof is complete.

C PROOF OF LEMMA 2

In previous works, the assumptions regarding the noise εt differ from those in our work. Srinivas
et al. (2010) and Nguyen & Gupta (2017) assume that the noise is uniformly bounded by σ, whereas
Chowdhury & Gopalan (2017) and Gupta et al. (2022) assume that the noise is conditionally R-sub-
Gaussian. Furthermore, most prior research assumes that the noise sequence {εt}Tt=1 is a martingale
difference sequence. In contrast, our noise follows εt = Lval

(
λt, θ

N
λt
, Sval

)
− L

(
λt, θ

∗
λt

)
, which

clearly does not align with the assumptions made in previous works. Consequently, we cannot directly
apply theorems similar to those in previous research that express the concentration of the posterior
mean around the true objective function.

We follow the framework in Srinivas et al. (2010) to prove lemma 2.

Proof of lemma 2. Let’s revisit the posterior mean function denoted as µt(·) and the posterior covari-
ance function denoted as kt(·, ·) as discussed in Section 3.2.2, taking into account the data points
(λi, yi) for i = 1, . . . , t. It becomes apparent that the RKHS norm associated with the kernel kt can
be expressed as:

∥L(·, θ∗· )∥2kt
= ∥L(·, θ∗· )∥2k + σ−2

t∑
i=1

L
(
λi, θ

∗
λi

)2
. (C.1)
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This suggests that Hk(Λ) and Hkt
(Λ) are equivalent for any t. Given that the reproducing property

holds, i.e., ⟨L(·, θ∗· ), kt(·, λ)⟩kt
= L(λ, θ∗λ) for any L(·, θ∗· ) ∈ Hkt

(Λ), then,

|µt(λ)− L(λ, θ∗λ)| ≤ kt(λ, λ)
1/2 ∥µt − L(·, θ∗· )∥kt

= σt(λ) ∥µt − L(·, θ∗· )∥kt
. (C.2)

Recall that the posterior mean function is given by:

µt(λ) = kt(λ)
T
(
Kt + σ2I

)−1
yt.

Then, we also have:

⟨µt, L(·, θ∗· )⟩k = Lt(λ, θ
∗
λ)

T
(
Kt + σ2I

)−1
yt, (C.3)

where Lt(λ, θ
∗
λ) = [L(λ1, θ

∗
λ1
), . . . , L(λt, θ

∗
λt
)]T . Additionally, the RKHS norm of µt is given by:

∥µt∥2k = yT
t

(
Kt + σ2I

)−1
yt − σ2∥

(
Kt + σ2I

)−1
yt∥2. (C.4)

Moreover, for i ≤ t, we obtain:

µt(λi) = δTi,tKt

(
Kt + σ2I

)−1
yt

= δTi,t(Kt + σ2I)
(
Kt + σ2I

)−1
yt − σ2δTi,t

(
Kt + σ2I

)−1
yt

= yi − σ2δTi,t
(
Kt + σ2I

)−1
yt. (C.5)

where δi,t represents a t-dimensional vector where only the i-th element is equal to 1, while all other
elements are set to 0. Then, referring to Equation C.1, we can derive:

∥µt − L(·, θ∗· )∥
2
kt

= ∥µt − L(·, θ∗· )∥
2
k + σ−2

t∑
i=1

(µt(λi)− L
(
λi, θ

∗
λi

)
)2.

= ∥µt∥2k + ∥L(·, θ∗· )∥2k − 2 ⟨µt, L(·, θ∗· )⟩k + σ−2
t∑

i=1

(µt(λi)− L
(
λi, θ

∗
λi

)
)2.

(C.6)

The noise sequence is εt = {εi}ti=1 with εi = yi − L
(
λi, θ

∗
λi

)
. Taking into account equation C.5,

we can express this as follows:

σ−2
t∑

i=1

(µt(λi)− L
(
λi, θ

∗
λi

)
)2 = σ−2

t∑
i=1

(εi − σ2δTi,t
(
Kt + σ2I

)−1
yt)

2

≤ σ2∥
(
Kt + σ2I

)−1
yt∥2 − 2εTt

(
Kt + σ2I

)−1
yt + σ−2∥εt∥2

(C.7)

Considering ∥L(·, θ∗· )∥k is bounded by B, the upper bound of the noise from Theorem 1 and the
positive definiteness of Kt + σ2I , we can substitute equations C.3, C.4, and C.7 into equation C.6 to
derive, with a probability at least 1− δ:

∥µt − L(·, θ∗· )∥
2
kt

= ∥L(·, θ∗· )∥2k − yT
t

(
Kt + σ2I

)−1
yt + σ−2∥εt∥2

≤ B2 + σ−2tφ2(N)N−1. (C.8)

Combining inequalities C.2 and C.8, we obtain that

|µt(λ)− L (λ, θ∗λ) | ≤
√

B2 + σ−2tφ2(N)N−1σt(λ).

The proof is completed.
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D PROOF OF THEOREM 3

First, we will bound the instantaneous regret, given by rt = L
(
λ+
t , θ

N
λ+
t

)
− L (λ∗, θ∗λ∗). Next, we

will aim to find an upper bound for the sum RT =
∑T

t=1 rt.

To derive an upper bound for rt, we decompose it into three constituent terms as follows:

rt = L
(
λ+
t , θ

N
λ+
t

)
− L (λ∗, θ∗λ∗)

= L
(
λ+
t , θ

N
λ+
t

)
− L

(
λ+
t , θ

∗
λ+
t

)
︸ ︷︷ ︸

Term 6

+L
(
λ+
t , θ

∗
λ+
t

)
− µ+

t︸ ︷︷ ︸
Term 7

+µ+
t − L (λ∗, θ∗λ∗)︸ ︷︷ ︸

Term 8

. (D.1)

We introduce the function τ(z) = zΦ(z) + ϕ(z), where Φ and ϕ represent the cumulative distribu-
tion function (c.d.f.) and probability density function (p.d.f.) of the standard normal distribution,
respectively. Now, we define the function It(λ) as follows: It(λ) = max

{
µ+
t − L (λ, θ∗λ) , 0

}
. In

this expression, It(λ) assumes positive values when the prediction is lower than the minimum GP
mean observed so far up to that point. For all other cases, It(λ) is set to zero. The process of finding
the new query point involves maximizing the expected improvement:

λt = argmaxλ E (It(λ)) .

Upper Bounding Term 6.
Lemma 12. Choose δ ∈ (0, 1) and N ≍ m. Then with probability at least 1− δ, we have

L
(
λ+
t , θ

N
λ+
t

)
− L

(
λ+
t , θ

∗
λ+
t

)
≤ α(N)N− 1

2 ,

where α(N) = O
(
log

3
2 N

)
.

Proof of lemma 12. We decompose Term 6 into two constituent terms.

L
(
λ+
t , θ

N
λ+
t

)
− L

(
λ+
t , θ

∗
λ+
t

)
= L

(
λ+
t , θ

N
λ+
t

)
− Lval(λ+

t , θ
N
λ+
t
, Sval) + Lval(λ+

t , θ
N
λ+
t
, Sval)− L

(
λ+
t , θ

∗
λ+
t

)
.

In regard to L
(
λ+
t , θ

N
λ+
t

)
− Lval

(
λ+
t , θ

N
λ+
t

, Sval
)

, it is noteworthy that θN
λ+
t

is derived through

training on the dataset Str, which remains independent of the dataset Sval. Consequently, we can
establish the following relationship:

L
(
λ+
t , θ

N
λ+
t

)
= E

[
Lval

(
λ+
t , θ

N
λ+
t
, Sval

)]
.

Moreover, given that ℓ(λ, θ, z) is uniformly bounded by M , when considering datasets Sval and
Sval′ , which differ by only a single example, the following assertion can be made:

Lval
(
λ+
t , θ

N
λ+
t
, Sval

)
− Lval

(
λ+
t , θ

N
λ+
t
, Sval′

)
=

1

m

(
m∑
i=1

ℓ
(
λ+
t , θ

N
λ+
t
, zvali

)
−

m∑
i=1

ℓ
(
λ+
t , θ

N
λ+
t
, zval

′

i

))
≤ M

m
.

Then we can apply lemma 6 with c = M
m to obtain, with probability at least 1− δ,∣∣∣Lval

(
λ+
t , θ

N
λ+
t
, Sval

)
− L

(
λ+
t , θ

N
λ+
t

)∣∣∣ ≤ M

√
1

2m
log(2/δ).

As for the second term Lval
(
λ+
t , θ

N
λ+
t

, Sval
)
−L

(
λ+
t , θ

∗
λ+
t

)
, we can apply the result from Theorem

1 to obtain:
Lval

(
λ+
t , θ

N
λ+
t
, Sval

)
− L

(
λ+
t , θ

∗
λ+
t

)
≤ φ(N)N− 1

2 ,
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where φ(N) = O
(
log

3
2 N

)
. Then, combining the above two inequalities and choosing N ≍ m, we

can deduce that, with a probability of at least 1− δ,

L
(
λ+
t , θ

N
λ+
t

)
− L

(
λ+
t , θ

∗
λ+
t

)
≤ α(N)N− 1

2 , (D.2)

where α(N) = O
(
log

3
2 N

)
. The proof is complete.

Upper Bounding Term 7.

When addressing Terms 7 and 8, we adopt the proof framework outlined in Gupta et al. (2022),
with the ability to adapt and apply certain lemmas from Gupta et al. (2022) to our proof following
appropriate adjustments.

Lemma 13. (Gupta et al. (2022)) Choose a value for δ from the interval (0, 1). Then, with a
probability of 1− δ, we obtain

L
(
λ+
t , θ

∗
λ+
t

)
− µ+

t ≤ βt

(√
2π (βt + 1)σt−1 (λt) +

√
2πIt(λt)

)
.

Upper Bounding Term 8.

Initially, we establish both the lower and upper bounds for the acquisition function. The following
lemma draws inspiration from Lemma 9 in Wang & de Freitas (2014).

Lemma 14. Choose δ ∈ (0, 1). For λ ∈ Λ, t ∈ T , define It(λ) = max
{
0, µ+

t − L (λ, θ∗λ)
}

. Then
with probability at least 1− δ we have

It(λ)− βtσt−1(λ) ≤ EIt(λ) ≤ It(λ) + (βt + 1)σt−1(λ).

Proof of lemma 14. If σt−1(λ) = 0, then EIt(λ) = It(λ) = 0, which leads to a trivial result. Now,

let’s assume that σt−1(λ) > 0. Define q =
µ+
t −L(λ,θ∗

λ)
σt−1(λ)

and u =
µ+
t −µt−1(λ)
σt−1(λ)

. We can then establish
that:

EIt(λ) = σt−1(λ)τ (u) .

According to lemma 2, we can conclude that |u− q| ≤ βt with a probability of at least 1− δ. Since
τ ′(z) > 0, τ is a non-decreasing function, and for z > 0, τ(z) ≤ 1 + z. Therefore, we have:

EIt(λ) ≤ σt−1(λ)τ (max{0, q}+ βt)

≤ σt−1(λ) (max{0, q}+ βt + 1)

= It(λ) + (βt + 1)σt−1(λ).

If It(λ) = 0, the lower bound is straightforward as EIt(λ) is non-negative. Let’s consider the case
where It(λ) > 0. Since EIt(λ) ≥ 0 and τ(z) ≥ 0 for all z, and τ(z) = z + τ(−z) ≥ z. Therefore,
we can write:

EIt(λ) ≥ σt−1(λ)τ (q − βt)

≥ σt−1(λ) (q − βt)

= It(λ)− βtσt−1(λ).

The proof is now complete.

Lemma 15. Choose δ ∈ (0, 0.5). Then, with a probability of at least 1− 2δ, we obtain:

µ+
t − L (λ∗, θ∗λ∗) ≤

(
1 + βt

τ(βt)− βt

)
(It (λt) + (βt + 1)σt−1 (λt)) .

Proof of lemma 15. If σt−1(λ
∗) = 0, as per the definition of EIt(λ), we find that EIt(λ

∗) =
It(λ

∗) = 0, which leads to a trivial result. Now, let’s consider the case where σt−1(λ
∗) > 0. If

L (λ∗, θ∗λ∗) > µ+
t , the lemma remains trivial. We will now explore the case where L (λ∗, θ∗λ∗) ≤ µ+

t .
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Based on lemma 2, we know that L(λ∗, θ∗λ∗)−µt−1(λ
∗) ≥ −βtσt−1(λ

∗) with a probability of 1− δ.
Combining this with the fact that L(λ∗, θ∗λ∗) ≤ µ+

t , we can conclude that with a probability of 1− δ,
the following holds:

µ+
t − µt−1 (λ

∗)

σt−1 (λ∗)
≥ −βt.

Recalling the definition of the EI acquisition function, with a probability of at least 1− δ, we can
conclude that:

EIt (λ
∗) = σt−1 (λ

∗) τ

(
µ+
t − µt−1 (λ

∗)

σt−1 (λ∗)

)
≥ σt−1 (λ

∗) τ (−βt) .

Combining the above inequality with the previously established result EIt (λ
∗) ≥ It (λ

∗) −
βtσt−1 (λ

∗) as proven in Lemma 14, we obtain:

(
βt

τ(−βt)
+ 1)EIt (λ

∗) ≥ It (λ
∗) .

Using the above inequality in conjunction with the fact that τ(z) = z + τ(−z) for z = βt, we obtain

It (λ
∗) ≤

(
τ(βt)

τ(βt)− βt

)
EIt (λ

∗) ≤
(

1 + βt

τ(βt)− βt

)
EIt (λ

∗) . (D.3)

In accordance with Algorithm 1, λt = argmaxEIt(λ). When combined with the upper bound from
Lemma 14, we can deduce:

EIt (λ
∗) ≤ EIt (λt) ≤ It (λt) + (βt + 1)σt−1 (λt) (D.4)

Utilizing the inequalities D.3 and D.4, we obtain

µ+
t − L (λ∗, θ∗λ∗) ≤ It (λ

∗)

≤
(

1 + βt

τ(βt)− βt

)
EIt (λ

∗)

≤
(

1 + βt

τ(βt)− βt

)
(It (λt) + (βt + 1)σt−1 (λt)) . (D.5)

The proof of lemma 15 is complete.

Upper bounding the immediate regret. rt = L
(
λ+
t , θ

N
λ+
t

)
− L (λ∗, θ∗λ∗). Combining lemma 12

for Term 6, lemma 13 for Term 7 and lemma 15 for Term 8, we can conclude with high probability
that:

rt ≤
(

1 + βt

τ(βt)− βt
+
√
2πβt

)
[It(λt) + (βt + 1)σt−1 (λt)] + α(N)N− 1

2 . (D.6)

Upper bounding the cumulative regret. RT =
∑T

t=1 rt. Based on the above inequality, we can
derive an upper bound for the cumulative regret as follows:

T∑
t=1

rt ≤
(

1 + βT

τ(βT )− βT
+
√
2πβT

)
T∑

t=1

It(λt)︸ ︷︷ ︸
Term 9

+(βT + 1)

T∑
t=1

σt−1 (λt)︸ ︷︷ ︸
Term 10

+ Tα(N)N− 1
2 .

(D.7)

We now introduce lemma 16 and lemma 17 from Gupta et al. (2022) and Chowdhury & Gopalan
(2017) to assist in bounding Term 9 and Term 10.
Lemma 16. Gupta et al. (2022) Select δ from the interval (0, 1). Then, with a probability of at least
1− δ, we can establish that:

T∑
t=1

It(λt) = O
(
βT

√
TγT

)
.
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Lemma 17. Chowdhury & Gopalan (2017) Let λ1, . . . , λt represent the points selected by algorithm
1. The sum of the predictive standard deviations at these points can be expressed in terms of the
maximum information gain. To be more precise:

T∑
t=1

σt−1 (λt) = O
(√

TγT

)
.

Ultimately, based on the above analysis, we can demonstrate Theorem 3 as follows.

Proof of Theorem 3. By combining the results in Lemma 16 and Lemma 17 with Inequality D.7, we
derive an upper bound for the cumulative regret

∑T
t=1 rt as follows:

RT =

T∑
t=1

rt = O
(

β2
T

√
TγT

τ(βT )− βT
+ TN− 1

2

)
. (D.8)

where βT =
√

B2 + σ−2Tφ2(N)N−1. If we select N ≍ T , we can deduce that:

RT =

T∑
t=1

rt = O
(√

TγT

)
. (D.9)

E PROOF OF THEOREM 4

In this section, we present the proof for Theorem 4.

Proof of Theorem 4. To derive an upper bound for rt, we decompose it into two constituent terms as
follows:

rt = L
(
λ+
t , θ

N
λ+
t

)
− L (λ∗, θ∗λ∗)

= L
(
λ+
t , θ

N
λ+
t

)
− L

(
λ+
t , θ

∗
λ+
t

)
︸ ︷︷ ︸

Term 11

+L
(
λ+
t , θ

∗
λ+
t

)
− L (λ∗, θ∗λ∗)︸ ︷︷ ︸

Term 12

. (E.1)

From inequality D.2, we can derive an upper bound for Term 11:

L
(
λ+
t , θ

N
λ+
t

)
− L

(
λ+
t , θ

∗
λ+
t

)
≤ α(N)N− 1

2 . (E.2)

Where α(N) = O(log3/2 N). Notice that at each round t ≥ 1, based on the selection of λ+
t in

Algorithm 2, i.e., λ+
t = argmaxλ (−µt−1(λ) + βtσt−1(λ)). we have

−µt−1(λ
∗) + βtσt−1(λ

∗) ≤ −µt−1(λ
+
t ) + βtσt−1(λ

+
t ).

From lemma 2, we have

−L (λ∗, θ∗λ∗) ≤ −µt−1(λ
∗) + βtσt−1(λ

∗),

L
(
λ+
t , θ

∗
λ+
t

)
− µt−1(λ

+
t ) ≤ βtσt−1(λ

+
t ).

Utilizing the above three inequalities, we can derive an upper bound for Term 12:

L
(
λ+
t , θ

∗
λ+
t

)
− L (λ∗, θ∗λ∗) ≤ L

(
λ+
t , θ

∗
λ+
t

)
− µt−1(λ

∗) + βtσt−1(λ
∗)

≤ L
(
λ+
t , θ

∗
λ+
t

)
− µt−1(λ

+
t ) + βtσt−1(λ

+
t )

≤ 2βtσt−1(λ
+
t ). (E.3)
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By combining the upper bound E.2 for Term 11 and the upper bound E.3 for Term 12 with Equation
E.1, we obtain

RT =

T∑
t=1

rt ≤ 2βT

T∑
t=1

σt−1

(
λ+
t

)
+ Tα(N)N− 1

2 .

From lemma 17, we have
∑T

t=1 σt−1

(
λ+
t

)
= O

(√
TγT

)
. Additionally, according to the definition,

we have βT =
√
B2 + σ−2Tφ2(N)N−1. Hence with probability at least 1− δ,

RT = O
(√

(B2 + TN−1)TγT + TN− 1
2

)
. (E.4)

If we select N ≍ T , we can obtain that:

RT = O
(√

TγT

)
. (E.5)

F EXTENSIONS

In this section, we present some extensions of our analyses. We consider two extensions: extension
to non-convex scenarios and extension to non-smooth scenarios.

F.1 EXTENSION TO NON-CONVEX SCENARIOS

In this section, we extend Theorem 1 to non-convex loss functions as follows.
Theorem 18. Suppose that the function ℓ(λ, θ, z) is K-Lipschitz and γ-smooth with respect to θ,
uniformly bounded by M , and also satisfies 1

2∥∇θℓ(λ, θ, z)∥2 ≥ µ(ℓ(λ, θ, z)− ℓ(λ, θ∗λ, z)), µ > 0.
We perform SGD with step sizes ηj = 2j+1

2µ(j+1)2 on a sample Str drawn from the distribution D at

the inner level. Let Sval =
{
zvali

}m
i=1

represent the validation set drawn from the distribution D.
Suppose γ ≤ Nµ/4. Choose N ≍ n ≍ m. Then, with a probability of at least 1− δ, we have:

Lval(λ, θNλ , Sval)− L(λ, θ∗λ) = O
((

N− 1
2µ− 1

2 +N− 1
4µ− 3

4

)
logN

)
As a comparison, if ℓ(λ, θ, z) is convex and ηj ≍ N− 1

2 , then we have:

Lval(λ, θNλ , Sval)− L(λ, θ∗λ) = O
(
N− 1

2 logN
)

Proof of Theorem 18. To establish an upper bound of the excess risk of the inner-level SGD, denoted
as Lval

(
λ, θNλ , Sval

)
− L (λ, θ∗λ), we introduce a highly effective decomposition method:

Lval
(
λ, θNλ , Sval

)
− L (λ, θ∗λ) = Lval

(
λ, θNλ , Sval

)
− L(λ, θNλ ) + L(λ, θNλ )− L (λ, θ∗λ) . (F.1)

As elucidated in Remark 5 of Lei & Ying (2021), based on the pointwise hypothesis stability analysis
and the optimization error bound in Karimi et al. (2016), it was shown with probability at least 1− δ
(Charles & Papailiopoulos (2018)) that

L(λ, θNλ )− L (λ, θ∗λ) = O
(

1√
nµδ

+
1

N
1
4µ

3
4 δ

1
2

)
. (F.2)

From the equation B.7 in the proof of Theorem 1 in Section B, we obtain

L
(
λ, θNλ

)
− Ltr

(
λ, θNλ , Str

)
= O

(
ηNn−1 log n log (1/δ) +M

√
n−1 log (1/δ)

)
. (F.3)

Selecting N ≍ m ≍ n, we obtain

Lval(λ, θNλ , Sval)− L(λ, θ∗λ) = O
((

N− 1
2µ− 1

2 +N− 1
4µ− 3

4

)
logN

)
The proof is complete.

Practical insights: Inner Unit Horizon as the Square of Outer-Level Iterations for Non-convex
functions. Unlike the case with convex, for the non-convex situation, the optimal number of inner-
level SGD optimization iterations is N ≍ T 2. Hence, we attained the regret bound RT = O(

√
TγT ).

.
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F.2 EXTENSION TO NON-SMOOTH SCENARIOS

In this section, we extend Theorem 1 to non-smooth loss functions as follows. We remove the
smoothness assumption by introducing an additional term η

√
N in the excess risk bound. Moreover,

we adopt alternative criteria, including weaker conditions, such as defining α-Hölder continuity as:
Definition 4. Let γ > 0, α ∈ (0, 1]. We say ∇θℓ is α-Hölder continuous if for any θ1, θ2, z, λ,

∥∇θℓ(λ, θ1, z)−∇θℓ(λ, θ2, z)∥ ≤ γ∥θ1 − θ2∥α2 .

The theorem is updated as follows
Theorem 19. Suppose that the function ℓ(λ, θ, z) is K-Lipschitz continuous, and convex with respect
to θ, uniformly bounded by M . Let p > 1

2 . We perform SGD with step sizes ηj = η ≍ N−p on a
sample Str drawn from the distribution D at the inner level. Let Sval =

{
zvali

}m
i=1

represent the
validation set drawn from the distribution D. Choose N ≍ n ≍ m. Then, with a probability of at
least 1− δ, we have:

Lval(λ, θNλ , Sval)− L(λ, θ∗λ) = O
(
N

1
2−p log(N) +N−p log(N) +N− 1

2 log(N)
)

Furthermore, if ℓ(λ, θ, z) is α-Hölder continuous, then we have:

Lval(λ, θNλ , Sval)− L(λ, θ∗λ) = O
(
N1− p

1−α log(N) +N−p log(N) +N− 1
2 log(N)

)
As a comparison, if ℓ(λ, θ, z) is smooth, then we have:

Lval(λ, θNλ , Sval)− L(λ, θ∗λ) = O
(
N−p log(N) +N− 1

2 log(N)
)

Proof of Theorem 19. Similar to the proof of Theorem 1 in Section B, for establishing an upper bound
on the excess risk Lval(λ, θNλ , Sval)− L(λ, θ∗λ), we employ an effective decomposition method:

Lval
(
λ, θNλ , Sval

)
− L (λ, θ∗λ) = Lval

(
λ, θNλ , Sval

)
− Ltr

(
λ, θNλ , Str

)︸ ︷︷ ︸
Term 9

+ Ltr
(
λ, θNλ , Str

)
− Ltr

(
λ, θ∗λ, S

tr
)︸ ︷︷ ︸

Term 10

+Ltr
(
λ, θ∗λ, S

tr
)
− L (λ, θ∗λ)︸ ︷︷ ︸

Term 11

.

Regarding Term 10 and Term 11, based on Lemma 10 and Lemma 11, we derive:

Ltr
(
λ, θNλ , Str

)
− Ltr

(
λ, θ∗λ, S

tr
)
+ Ltr

(
λ, θ∗λ, S

tr
)
− L (λ, θ∗λ)

= O
(
(N− 1

2 +Np−1) log(N)
)

= O
(
N− 1

2 log(N)
)
. (F.4)

For Term 9, we decompose it as follows:

Lval
(
λ, θNλ , Sval

)
−Ltr

(
λ, θNλ , Str

)
= Lval

(
λ, θNλ , Sval

)
−L(λ, θNλ )+L(λ, θNλ )−Ltr

(
λ, θNλ , Str

)
.

As demonstrated in B.8, we utilize Lemma 6 with c = M
m to acquire, with a probability of at least

1− δ,

|Lval
(
λ, θNλ , Sval

)
− L

(
λ, θNλ

)
| ≤ M

√
1

2m
log(2/δ). (F.5)

Choose N ≍ n ≍ m, we obtain:

Lval
(
λ, θNλ , Sval

)
− L

(
λ, θNλ

)
= O

(
N− 1

2

)
. (F.6)

Concerning the generalization error L(λ, θNλ ) − Ltr
(
λ, θNλ , Str

)
, by combining Lemma 8 with

Theorem 3.3 in Bassily et al. (2020), we obtain, with a probability of at least 1− δ,

L(λ, θNλ )− Ltr
(
λ, θNλ , Str

)
= O

(
N

1
2−p logN +N−p logN +N− 1

2

)
(F.7)
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Then, we obtain:

Lval(λ, θNλ , Sval)− L(λ, θ∗λ) = O
(
N

1
2−p log(N) +N−p log(N) +N− 1

2 log(N)
)

Furthermore, if ℓ(λ, θ, z) is α-Hölder continuous, then by combining Lemma 8 with Proposition G.1.
in Lei & Ying (2020), we obtain, with a probability of at least 1− δ,

L(λ, θNλ )− Ltr
(
λ, θNλ , Str

)
= O

(
N1− p

1−α logN +N−p logN +N− 1
2

)
(F.8)

Then, we obtain:

Lval(λ, θNλ , Sval)− L(λ, θ∗λ) = O
(
N1− p

1−α log(N) +N−p log(N) +N− 1
2 log(N)

)
.

The proof is complete.
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