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Abstract Foundation models show astonishing performance for a variety of tasks
while requiring extremely huge amounts of computing resources in both training
and inference. Such costs are beyond the affordability of most users; consequently,
foundation models are dominantly occupied by tech giants. To pursue an affordable
and democratic future of foundation models, there is growing interest in examin-
ing decentralised learning approaches. This chapter provides a thorough review of
the current decentralised solutions and offers insights into prospective strategies to
overcome the existing barriers. We also describe our insights in facilitating decen-
tralised learning by blockchain, as well as challenges and future work. In our vision,
decentralised learning will energise the foundation model economy, but is still ob-
structed by major challenges such as establishing robust incentive mechanisms and
developing training strategies suitable for heterogeneous environments.

1 Introduction

Recently, foundation models [8] (e.g., T5 [61], GPT-3 [13], PaLM [17], OPT [93],
GPT-4 [1], Llama-2 [75], Mistral [35] and DALL·E 3 [5]) have made groundbreaking
advancements in understanding and generating natural language and images, driven
by substantial increases in model size and training data size [13]. Notably, GPT-3
consists of over 100 billion parameters and leverage immensely large datasets for
training [13]. This expansion necessitates extremely high demand of CPU, memory,
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and GPU hardware. Furthermore, the operational costs associated with running
these foundation models at such a massive scale have escalated substantially. For
instance, OpenAI reportedly incurs a daily expenditure of $700,000 to maintain
ChatGPT [84], despite the fact that training the GPT-3 foundation model alone
cost over $5 million [84]. Consequently, only a small set of large corporations with
sufficient data and computation resources control the access to the best AI models.

To democratise these advanced technologies for a broader user base, decentral-
ized learning emerges as a promising strategy. The general idea of decentralized
learning is to crowdsource the training of machine learning models with thousands
of regular volunteers provided by decentralised volunteers via a peer-to-peer (P2P)
network. Concretely, one could partition a large model (e.g., a neural network) into
thousands of parallel segments and let each volunteer manage one of the segments.
The advantages are mainly threefold:

• Cost amortization. As more volunteers contribute their computational re-
sources, the costs of computational tasks are spread over a larger number of
participants. This reduces the individual cost burden, making participation in
the network more affordable;

• Autonomy. Decentralization creates an environment where autonomous and
democratic participation is naturally encouraged.

• Fault tolerance. As the volunteer network grows, the resilience of the system to
node and communication failures strengthens, enhancing its overall robustness.

Despite these advantages, training foundation models in a fully decentralised
manner presents unique obstacles. The primary challenges include managing and
potentially incentivizing intricate coordination among a massive number of hetero-
geneous volunteers (i.e., with data, computational power, and model heterogeneity)
with inconsistent network connectivity. This leads us to an important question:

•? Question

How can we effectively coordinate the decentralised training of foundation models
with heterogeneous volunteers under inconsistent network connectivity?

To answer this pivotal question, this chapter provides a thorough review of the
existing solutions and envisions future strategies aimed at advancing towards a
democratic and affordable future of foundation models. Section 2 introduces the
basic concepts of deep learning and foundation models, while Section 3 discusses
decentralised machine learning strategies and their cutting-edge extensions for train-
ing foundation models, highlighting the benefits of communication efficiency and
cost-sharing mechanisms in decentralised approaches. Sections 3.1 and 3.2 detail the
core principles, motivations, and algorithmic development of decentralised training
methods. Section 3.3 explores the specific challenges associated with scaling decen-
tralised techniques to support the training of foundation models, and summarizes
current advancements. The chapter further assesses the advantages of integrating
Blockchain technology within decentralised learning systems in Section 4.
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2 Deep Learning and Foundation Models

Deep learning emerges as a transformative force in artificial intelligence, fundamen-
tally reshaping our understanding and potential within the field. Drawing inspiration
from the neural networks of the human brain, deep learning models can learn from
large datasets to identify underlying patterns and generalize, that is, to make accurate
predictions on unseen data. They have proven to be exceptionally adept across various
domains, including language processing [22, 13] to vision [39, 31], outperforming
traditional machine learning models.

Foundation models, exemplified by groundbreaking language models like Ope-
nAI’s ChatGPT, represent another leap forward. These models are trained on ex-
tensive datasets, which lays the groundwork for their remarkable ability to adapt to
specialized tasks through fine-tuning. ChatGPT, in particular, also extends beyond
standard fine-tuning by incorporating reinforcement learning from human feedback
(RLHF) [18], a promising way to align foundation models with human intents. The
performance of foundation models can be further elevated by employing techniques
such as prompt tuning [13] and in-context learning [82], which refine its ability to
interpret and respond to prompts in a context-aware manner Furthermore, techniques
like LoRA [32] enable more resource-efficient fine-tuning by integrating low-rank
layers into the original model, thereby avoiding the retraining of entire parameters.

Despite these technical achievements, foundation models like GPT-3.5 also
present substantial challenges, particularly in terms of the economic investment
required for their deployment and development. GPT-3.5, with its extensive ability
to generate human-like text, answer complex questions, and craft creative content,
comes at the cost of significant hardware and computational demands. These de-
mands render the deployment and training of such models economically infeasible
for many individuals and academic institutions. These barriers stand as significant
impediments to democratizing access to state-of-the-art models, potentially stifling
scientific advancement.

3 Decentralised Machine Learning

This aforementioned challenges necessitates the development of sophisticated dis-
tributed learning paradigms. In this section, we introduce decentralised machine
learning, which integrates the idea of volunteer computing into distributed machine
learning. We start from the formal definition of distributed machine learning, then in-
troduce the algorithmic aspects of decentralised learning, and move on to summarize
the latest research on decentralised training of foundation models.
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Algorithm 1 Parallel SGD [21, 43]
Worker 𝑗 = 1, . . . , 𝑚 (in parallel):
1: Receive 𝜃0 = 0 from server
2: for step 𝑡 = 1 to 𝑇 do
3: Sample training batch {𝑧 𝑗,𝑖 }

|𝜇𝑡
𝑗
|

𝑖=1 from local training dataset

4: Compute gradient 𝑔𝑡
𝑗

:= 1
|𝜇𝑡

𝑗
|
∑|𝜇𝑡

𝑗
|

𝑖=1 ∇𝐿 (𝜃 𝑡 , 𝑧 𝑗,𝑖 ) ⊲ mini-batch gradient computation
5: Push 𝑔𝑡

𝑗
to server

6: Receive 𝜃 𝑡+1 from server
Server:
7: for 𝑡 = 1 to 𝑇 do
8: Aggregate 𝑔𝑡 := 1

𝑚

∑𝑚
𝑗=1 𝑔

𝑡
𝑗

⊲ global gradient aggregation
9: Set learning rate as 𝜂𝑡 , update 𝜃 𝑡+1 := 𝜃 𝑡 − 𝜂𝑡𝑔𝑡 ⊲ global weight update

3.1 Distributed Machine Learning

Notations. We denote X ⊆ R𝑑𝑥 and Y ⊆ R as the input and output domains,
respectively. The training set is denoted as 𝜇 = {𝑧1, . . . , 𝑧𝑁 }, where each 𝑧𝜁 =

(𝑥𝜁 , 𝑦𝜁 ), for 𝜁 = 1, . . . , 𝑁 , is sampled independent and identically distributed (i.i.d.)
from an unknown data distribution D defined on Z = X×Y. The goal of supervised
learning is to learn a predictor (or hypothesis) 𝑔(𝜃; ·), parameterized by 𝜃 ∈ R𝑑 of an
arbitrary finite dimension 𝑑, to approximate the mapping between the input variable
𝑥 ∈ X and the output variable 𝑦 ∈ Y, based on the training set 𝜇. The cost function
𝑐 : Y × Y ↦→ R+ is used to evaluate the prediction performance of hypothesis
𝑔. The loss of a hypothesis 𝑔 with respect to (w.r.t.) the example 𝑧𝜁 = (𝑥𝜁 , 𝑦𝜁 )
is defined as 𝐿 (𝜃; 𝑧𝜁 ) = 𝑐(𝑔(𝜃; 𝑥𝜁 ), 𝑦𝜁 ), which quantifies the performance of the
model parameterized by 𝜃. The empirical risk of 𝜃, which is the target of optimisation,
is thus defined as follows:

𝐿
𝜇

𝜃
=

1
𝑁

𝑁∑︁
𝜁=1

𝐿 (𝜃; 𝑧𝜁 ). (1)

Distributed learning. Traditional distributed learning considers optimising the
empirical risk jointly with multiple workers [66]. In this framework, each worker, for
𝑗 = 1, . . . , 𝑚, can access |𝜇 𝑗 | i.i.d. local training examples 𝜇 𝑗 = {𝑧 𝑗 ,1, . . . , 𝑧 𝑗 , |𝜇 𝑗 | }.
The global empirical risk of 𝜃 then becomes

𝐿
𝜇

𝜃
=

1
𝑚

𝑚∑︁
𝑗=1

𝐿
𝜇 𝑗

𝜃
=

1
𝑚

𝑚∑︁
𝑗=1

1
|𝜇 𝑗 |

|𝜇 𝑗 |∑︁
𝜁=1

𝐿 (𝜃; 𝑧 𝑗 ,𝜁 ), (2)

where 𝐿𝜇 𝑗

𝜃
= 1

|𝜇 𝑗 |
∑ |𝜇 𝑗 |

𝜁=1 𝐿 (𝜃; 𝑧 𝑗 ,𝜁 ) denotes the local empirical risk on the 𝑗-th worker

and 𝜇 𝑗 = {𝑧 𝑗 ,𝜁 }
|𝜇 𝑗 |
𝜁=1 represents the local training dataset. The optimisation of equation

(2) is also a distributed consensus problem [12].
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Algorithm 2 FedAvg [53]
Client 𝑗 = 1, . . . , 𝑚 (in parallel):
1: Receive 𝜃0 = 0 from server
2: for round 𝑡 = 1 to 𝑇 do
3: for local step 𝑙 = 1 to 𝐸 do

4: Sample local training batch {𝑧 𝑗,𝑖 }
|𝜇𝑡,𝑙

𝑗
|

𝑖=1 from local training dataset

5: Compute gradient 𝑔𝑡,𝑙
𝑗

:= 1
|𝜇𝑡,𝑙

𝑗
|
∑|𝜇𝑡,𝑙

𝑗
|

𝑖=1 ∇𝐿 (𝜃 𝑡,𝑙 , 𝑧 𝑗,𝑖 ) ⊲ local gradient computation

6: Set local learning rate as 𝜂
𝑡,𝑙
𝑗

, compute 𝜃
𝑡,𝑙+1
𝑗

:= 𝜃
𝑡,𝑙
𝑗

− 𝜂𝑡
𝑗
𝑔
𝑡,𝑙
𝑗

⊲ local weight update
7: Push 𝜃 𝑡,𝐸 to server
8: Receive 𝜃 𝑡+1 from server
Server:
9: for 𝑡 = 1 to 𝑇 do

10: Aggregate 𝜃 𝑡+1 := 1
𝑚

∑𝑚
𝑗=1 𝜃

𝑡,𝐸
𝑗

⊲ global weight aggregation

Due to the increasing scale of training data and the model complexity, various
parallelisation strategies have been proposed for effective large-scale distributed
learning. The primary strategies include data parallelism, pipeline parallelism, and
tensor parallelism.

Data parallelism. In machine learning scenarios where fixed training datasets
are available, the aforementioned distributed strategy corresponds to randomly par-
titioning the whole training samples among the multiple machines. Each machine is
thus endowed with a subset of samples that are i.i.d. drawn from the same source
distribution. Extending the principle, data parallelism [45] shares the workload by
distributing a large mini-batch across multiple devices. Each device trains its own
local model replica independently. Ensuring consistency across these local mod-
els necessitates synchronization of gradients information via a parameter server
[71, 21, 43] or through an AllReduce operation [60, 45]. Algorithm 1 is an exam-
ple of implementing stochastic gradient descent with a parameter server. In each
step, each worker computes their gradients locally, then the server aggregates these
gradients to update the shared parameter. Federated Learning (FL) [53, 9, 47] is
another famous example of data parallelism. FL considers the problem of collabo-
rative learning with heterogeneous edge devices, where each device 𝑗 keep its own
local data. A typical FL approach is FedAvg (see Algorithm 2), where clients update
locally with 𝐸 steps, and then the server averages these local updated models to re-
fine the global model. The updated global model is then redistributed to the clients,
facilitating subsequent local training cycles. This decentralised approach leverages
the computational resources of the edge devices and also respects user privacy by
keeping sensitive data locally. Despite the advantages offered by data parallelism,
its scalability is mainly constrained by the following factors: the significant commu-
nication overhead required for model parameter synchronization which could limit
scalability [42, 47, 14], the reduction of GPU utilization as the per-GPU batch size
becomes too small [57], and the memory constraints that render loading an entire
large model onto a single GPU impractical.
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Fig. 1 An illustration of peer-to-peer communication topology in decentralised learning.

Pipeline parallelism. Addressing the challenge of individual GPU memory,
pipeline parallelism partitions a model into finer slices at the layer-level, each pro-
cessed on separate devices in a sequential fashion [33, 24, 55]. The downside of this
approach is that the sequential layer processing creates dependencies that can limit
scaling efficiency. These dependencies often result in potential idle time, known as
“bubble time”, where some devices wait for others to complete their tasks before
proceeding [56, 57].

Tensor parallelism. In tensor model parallelism [70], matrix multiplications
within each individual layer are split over multiple devices. This form of parallelism is
especially fitting for super-large models, and requires access to high communication-
bandwidth environments for efficiently handling the intensive data exchange [57].
However, in cases when intra-group communication is not fast enough, tensor model
parallelism may exhibit subpar performance. Therefore, tensor parallelism is typ-
ically applied within a single physical server, in conjunction with complementary
parallelisation strategies [34, 57].

3.2 Decentralised Machine Learning

To mitigate the communication bottleneck of server-based distributed machine learn-
ing, decentralised learning emerges as a powerful alternative. Employing a peer-
to-peer approach, decentralised training harnesses the power of locally connected
computing resources, effectively distributing the workload without the need for a
central coordinating server [81, 11, 92, 4, 52].

The conceptual foundations of decentralised training algorithms are rooted in the
early and influential work of [77], [76] and [59]. These studies provide the ground-
work for the development of algorithms such as Decentralised Parallel Stochastic
Gradient Descent (D-SGD) [48, 38], which integrates the principles of decentral-
isation with gradient-based optimisation (see Algorithm 3). In the vanilla Adapt-
While-Communicate (AWC) version of D-PSGD [59, 48], each worker updates its
own model locally and incorporating weights from peers. During weight exchange,
a “sender” shares its locally trained model with its neighbors, and a “receiver” inte-
grates these models into its local model. This peer-to-peer communication is through
a gossip protocol orchestrated by a mixing matrix 𝑃 = [𝑃 𝑗 ,𝑘] ∈ R𝑚×𝑚, which char-
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Algorithm 3 Decentralised Parallel SGD [48, 38]
Input: Given communication graph G = (V , E) and mixing matrix 𝑃 = [𝑃𝑗,𝑘 ] ∈ R𝑚×𝑚

Worker 𝑗 = 1, . . . , 𝑚 (in parallel):
1: Initialize 𝜃0

𝑗
= 0

2: for step 𝑡 = 1 to 𝑇 do
3: Sample training batch {𝑧 𝑗,𝑖 }

|𝜇𝑡
𝑗
|

𝑖=1 from local training dataset
4: for all neighbors 𝑘 : { 𝑗 , 𝑘} ∈ E do
5: Compute 𝜃

𝑡+ 1
2

𝑗
=
∑𝑚

𝑘=1 𝑃𝑗,𝑘 𝜃
𝑡
𝑘

⊲ gossip weight aggregation

6: Compute gradient 𝑔𝑡
𝑗

:= 1
|𝜇𝑡

𝑗
|
∑|𝜇𝑡

𝑗
|

𝑖=1 ∇𝐿 (𝜃 𝑡
𝑗
, 𝑧 𝑗,𝑖 ) ⊲ mini-batch gradient computation

7: Compute 𝜃 𝑡+1
𝑗

= 𝜃
𝑡+ 1

2
𝑗

− 𝑔𝑡
𝑗

⊲ local weight update

acterizes the connectivity of the underlying communication topology G [96]. The
central goal of D-PSGD is to establish a consensus model by optimising the em-
pirical risk 1

𝑚

∑𝑚
𝑗=1

1
|𝜇 𝑗 |

∑ |𝜇 𝑗 |
𝜁=1 𝐿 (𝜃; 𝑧 𝑗 ,𝜁 ) (see equation (2)) cooperatively through 𝑚

locally-connected workers.
Theoretical research has shown that large-scale models can effectively converge

with D-PSGD [50, 68], with asymptotic linear speedup in convergence rate similar to
centralised parallel SGD (C-SGD) [20, 44]. Recent studies [95] have further linked D-
PSGD to a centralised generalisation-enhancing algorithm called Sharpness-Aware
Minimization (SAM), suggesting that decentralised learning may offer additional
generalisation benefits compared to server-based learning paradigms.

The development of decentralised algorithms has been characterized by their
flexibility in adapting to complex environments. Notably, decentralised algo-
rithms have been adapted to various contexts, including time-varying topologies
[58, 51, 38, 91], asynchronous settings [49, 88, 54, 10], personalized settings
[46], data-heterogeneous scenarios [72, 78, 41] and Byzantine-robust versions
[90, 25]. Decentralised optimisation problems have been further extended beyond
standard single-level minimization problems, including compositional [27], mini-
max [87, 94, 15], and bi-level [89, 26, 16] optimisation problems. Despite these
advancements, existing decentralised training approaches predominantly focus on
data parallelism, which alone could be inadequate for foundation models whose
parameter sets are too large to be accommodated by a single device.

3.3 Decentralised Training and Inference of Foundation Models

Foundation models have reaped substantial rewards from the expansion of training
data and model complexity, in accordance with the principles of scaling laws [63, 37].
However, this trend towards larger data size and models has outstripped the evolution
of hardware, which trails behind the escalating requirements for computing power
and memory. As a result, training and deploying modern foundation models not
only requires advanced GPUs, but often necessitates specialized High-Performance
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Table 1 Review of Methods, Framework and Platforms for Decentralised Training and Inference
of Foundation Models.

Methods Description

Learning@home [65] A decentralised mixture-of-experts (MoE) training paradigm for mas-
sive, poorly connected networks

DeDLOC [23] A decentralised data-parallel framework using adaptive averaging strat-
egy for collaborative training under diverse internet speeds and connec-
tivity challenges

DT-FM [92] A decentralised pipeline parallel method for training GPT-style founda-
tion models, employing a specialized algorithm for “tasklet” allocation
over heterogeneous and lower-bandwidth networks.

SWARM Parallelism [64] A parallel training strategy for training billions of parameters across
unreliable, heterogeneous devices with slow connectivity

FusionAI [73] A distributed system supporting dynamic join and quit policy for training
large language models with underutilized consumer-grade GPUs

Petal [11] A decentralised collaborative inference service engine for cost sharing

HexGen [36] A decentralised inference method supporting asymmetric partitioning
of the inference computation by reformulating the scheduling problem
as a constrained optimisation problem

AQ-SGD [80] A decentralised activation compression algorithm for communication-
efficient pipeline parallelism training over slow networks

CocktailSGD [79] A communication-efficient algorithm combining decentralisation, spar-
sification, and quantization

SAKSHI [6] A decentralised platform for energy-efficient, trust-free, and incentive-
compatible AI service hosting and delivery

Computing (HPC) clusters to handle their substantial computational demands. So-
phisticated parallelisation strategies like data, pipeline, and tensor parallelism are
widely used, yet they assume the availability of luxury data centers equipped with
fast interconnects, which is beyond the budget of many individuals and academic
institutions. The immensity of this challenge is exemplified by the requirements
of foundation models like GPT-3, which requires 325GB of GPU memory [67]
and 3.64K petaflop/s-days for training [13]. Such requirements starkly illustrate the
daunting barriers faced by those with limited access to such computational resources.

Fully decentralised training of Foundation Models. Thanks to the advantages
in communication efficiency, cost sharing and fault tolerance, decentralised ap-
proaches have emerges as promising alternative to train foundation models such as
Large Language Models (LLMs). Leveraging the concept of volunteer computing
[69, 2, 3, 40], Learning@home [65] and DeDLOC [23] spearhead the collaborative
volunteer training of foundation models. Learning@home [65] proposes a promising
decentralised mixture-of-experts (MoE) training paradigm to handle massive poorly
connected participants with a Decentralised Hash Table (DHT) used to route inputs
to the appropriate expert. However, the training and evaluation of Learning@home
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is confined to relatively smaller datasets. DeDLOC [23] uses a decentralised adap-
tive averaging strategy that considers the diverse internet speeds and connectivity
limitations of volunteers, but still relys on data parallelism. [92] explores the po-
tential of training standard GPT-style foundation models with a new decentralised
model parallelism over a heterogeneous and lower-bandwidth interconnected net-
work. The major contribution is a scheduling algorithm allocating computational
“tasklets”. Subsequent work by SWARM Parallelism [64] leverages fault-tolerant
pipelines and dynamically rebalances nodes across stages to train foundation mod-
els on heterogeneous devices under slower connectivity. In parallel, [73] proposes
FusionAI supporting dynamic join and quit policy for training large language mod-
els with underutilized consumer-grade GPUs. Based on swarm parallelism, Petal
[11] develops a decentralised pipeline inference framework to amortize inference
cost of LLMs. Petal facilitates a collaborative environment wherein users can do-
nate heterogeneous computation resources to perform inference and small-scale
fine-tuning collaboratively. A more recent work inference method called HexGen
[36] can further allocate the asymmetric inference tasklets among workers by re-
formulating the scheduling problem as a constrained optimisation problem. At the
algorithmic level, CocktailSGD [79] elegantly combines decentralisation, sparsifica-
tion, and quantization for communication-efficient fine-tuning of foundation models
on slow networks. AQ-SGD [80] introduces a decentralised activation compression
algorithm for communication-efficient pipeline parallelism training over slow net-
works. Beyond the framework and algorithmic design, SAKSHI [6] emerges as a
new decentralised platform for energy-efficient, trust-free and incentive compatible
AI service hosting and delivery.

4 Decentralised Learning on Blockchain

As highlighted in the preceding section, decentralised learning stands out as an at-
tractive strategy for training foundation models, offering notable benefits in terms
of communication efficiency and cost-sharing. However, the absence of effective
incentive mechanism and reliable security assurances remains a critical hurdle for
such systems. Blockchain technology, characterized by its secure, auditable, im-
mutable, incentive-based and decentralised nature, presents a natural auxiliary to
decentralised learning that encourages a collaborative environment [30]. In this sec-
tion, we discuss the potential benefits of integrating Blockchain technology into
decentralised learning.

Automation. By combining blockchain technology with smart contracts [74],
users can execute verifiable and traceable transactions autonomously, aligning with
the self-organizing principles in decentralized learning systems.

Security and integrity. The security and integrity of transactions in a blockchain
network are ensured through a verification process. Each account in the blockchain
holds a public key and a private key, with the public key available to everyone and the
private key only visible to the account owner. When a user, designated as the Request
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Table 2 Advantages of Integrating Blockchain with Decentralised Learning

Aspect Role of Blockchain Impact on Decentralised Learning

Automation Smart contracts Automatically execute decentralised
training

Security & Integrity Robust encryption mechanisms;
Tamper-resistant ledgers

Secures model/data exchange by en-
suring only authorized access, main-
taining the immutability of records

Incentivization Token-based reward mechanism Encourages active and fair participa-
tion in model training

Node, submits a transaction, it uses its private key to create a digital signature for the
transaction data. This digital signature is unique to the transaction and the private
key of the Request Node. The verification process involves the following steps:

1. Hash the transaction data: The transaction data is hashed, creating a fixed-
length string of characters that uniquely represents the transaction.

2. Decrypt the digital signature: The public key is used to decrypt the digital
signature, revealing the original hash of the transaction data.

3. Compare hashes: The decrypted hash is compared to the hash of the transaction
data. If they match, it means the transaction data has not been tampered with.

4. Verify ownership: The network also verifies that the public key used to create
the digital signature belongs to the Request Node. If the signature is valid and the
public key matches the public key of the Request Node on record, the transaction
is considered legitimate.

Blockchain, further integrated with zero-knowledge proofs [29, 7, 28], could
offer a robust framework for safeguarding information exchange in decentralized
learning, where nodes can confirm the legitimacy of the contributions of others
without compromising privacy. In scenarios where there are many heterogeneous
participants, the data owner and computation provider can be decoupled. Consider
a Request Node falls short for substantial computational tasks. A straightforward
solution is to transmit the code and data to an entity with stronger computational
power, known as the Compute Node, as illustrated in Figure 2. In the scenario of
decentralized training, a natural question is

•? Questions

Execution Verification: How to confirm that the Compute Node has actually exe-
cuted the instruction from the Request Node and not fabricated the results in a fully
decentralised learning system?

In a collaborative learning system, the Compute Node can generate a zk-SNARK
proof after completing a computation task. This proof validates the correctness of
the computation without revealing the details. When a new computational task is
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Fig. 2 Procedure for Computation in a Centralised Cloud Computing Environment

submitted to the blockchain, miner nodes can verify this zk-SNARK proof in the
same way they would verify a transaction, without access to the specific details of
the computation. The strength of this system lies in the inherent immutability of
blockchain; once transactions of model updates are recorded on the ledger, they
are permanent and cannot be altered, effectively preventing unauthorized modifica-
tions. This characteristic is vital for creating a verifiable and trustable collaborative
learning environment, particularly in sensitive sectors such as healthcare where data
provenance and integrity are critical [81].

Incorporate Incentives. One of the primary goals of a self-organized decen-
tralised learning system is to foster sustainable collaboration among diverse partic-
ipants, thus necessitating the design of a robust incentive mechanism to effectively
motivate contributors; while also preventing unconstructive participation from re-
ceiving rewards. In a manner akin to how Filecoin [85] complements IPFS [86]
by providing an incentive layer, blockchain could facilitate the establishment for
such a mechanism in decentralized learning, distributing tokens or cryptocurrencies
as rewards for valuable contributions based on smart contracts. These incentives
are crucial for encouraging participants to contribute computational and communi-
cation resources or even local data, foundational to establishing a transparent and
cost-effective collaborative environment for training foundation models.

Despite the potential benefits, leveraging blockchain for training large-scale foun-
dation models presents challenges.

High communication costs. BAFFLE [62] and DeepChain [83] have leveraged
blockchain to mitigate the security and privacy issues in federated learning. However,
these works have not considered leveraging Blockchain to train large-scale deep
learning models, such as foundation models. The core challenges here lie in the
inefficiencies in parallelising the structure of current foundation models and the high
communication costs associated with Blockchain [19]. Therefore, designing model-
parallel, communication-efficient decentralized algorithms for training foundation
models could be a promising future direction.
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5 Conclusion

Foundation models are exceptionally effective for a broad range of tasks; however,
they require substantial computational resources for both training and inference,
making them financially and technically unattainable for most players. As a result,
the control over foundation models is predominantly held by tech giants. The pursuit
of a democratic and affordable future is in the interest of wide communities. In this
chapter, we discuss of a possible avenue via decentralised learning. We provide a
comprehensive review of current decentralised learning methods, the open problems
and existing technical challenges, and prospective approaches to address them. We
envision that decentralised methodologies could energise the economy based upon
foundation models; however, progress is still hindered by challenges including es-
tablishing robust incentive mechanisms and developing training strategies suitable
for heterogeneous environments. In this context, blockchain technologies can play a
significant role in facilitating decentralised learning.
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