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Abstract

Designing an incentive-compatible auction mechanism that maximizes the auc-
tioneer’s revenue while minimizes the bidders’ ex-post regret is an important yet
intricate problem in economics. Remarkable progress has been achieved through
learning the optimal auction mechanism by neural networks. In this paper, we
consider the popular additive valuation and symmetric valuation setting; i.e., the
valuation for a set of items is defined as the sum of all items’ valuations in the
set, and the valuation distribution is invariant when the bidders and/or the items
are permutated. We prove that permutation-equivariant neural networks have sig-
nificant advantages: the permutation-equivariance decreases the expected ex-post
regret, improves the model generalizability, while maintains the expected revenue
invariant. This implies that the permutation-equivariance helps approach the theo-
retically optimal dominant strategy incentive compatible condition, and reduces
the required sample complexity for desired generalization. Extensive experiments
fully support our theory. To our best knowledge, this is the first work towards
understanding the benefits of permutation-equivariance in auction mechanisms.

1 Introduction

Optimal auction design [30] has wide applications in economics, including computational advertising
[18], resource allocation [16], and supply chain [4]. In an auction, every bidder has a private valuation
profile over all items, and accordingly, submits her bid profile. An auctioneer collects the bids from
all bidders, and determines a feasible item allocation to the bidders as well as the prices the bidders
need to pay. Consequently, every bidder receives her utility. From the auctioneer’s perspective, the
optimal auction mechanism is required to maximize her revenue, defined as the sum of all bidders’
payments. From the aspect of the bidders, the optimal auction mechanism needs to incentivize every
bidder to bid their truthful valuation profiles (truthful bidding). This is summarized as the dominant
strategy incentive compatible (DSIC) condition; i.e., truthful bidding is always the dominant strategy
for every bidder [25].

The optimal auction mechanism can be approximated via neural networks [12, 29, 10]. The “approx-
imation error”, or the “distance” to the DSIC condition, is usually measured by the ex-post regret,
defined as the gap between the bidder’s utility of truthful bidding and the utility when her bid profile
is only the best to herself (selfish bidding), while the bid profiles of all other bidders are fixed in both
cases [12]. When a bidder’s ex-post regret is 0, truthful bidding is her dominant strategy. Therefore,
the optimal auction design can be modeled as a linear programming problem, where the object is to
maximize the expected revenue subject to the expected ex-post regret being 0 for all bidders [12].
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Another major consideration in learning the optimal mechanism is the generalizability to unseen data,
usually measured by the generalization bound, i.e., the upper bound of the gap between the expected
revenue/ex-post regret and their empirical counterparts on the training data [12].

In this paper, we consider the popular setting of additive valuation and symmetric valuation [12,
29, 10]. The additive valuation condition defines the valuation for a set of items as the sum of the
valuations for all items in this set. The symmetric valuation condition assumes the joint distribution
of all bidders’ valuation profiles to be invariant when bidders and/or items are permutated. This
setting covers many applications in practice. For example, when items are independent, the additive
valuation condition holds. Moreover, if the auction is anonymous or the order of the items is not
prior-known, the symmetric valuation condition holds.

We demonstrate that permutation-equivariant models have significant advantages in learning the
optimal auction mechanism as follows. (1) We prove that the permutation-equivariance in auction
mechanisms decreases the expected ex-post regret while maintaining the expected revenue invariant.
Conversely, and equivalently, the permutation-equivariance promises a larger expected revenue,
when the expected ex-post regret is fixed. (2) We show that the permutation-equivariance of auction
mechanisms reduces the required sample complexity for desirable generalizability. We prove that
the l∞,1-distance between any two mechanisms in the mechanism space decreases when they are
projected to the permutation-equivariant mechanism (sub-)space. This smaller distance implies a
smaller covering number of the permutation-equivariant mechanism space, which further leads to a
small generalization bound [12].

We further provide an explanation for the learning process of non-permutation-equivariant neural
networks (NPE-NNs). In learning the optimal auction mechanism by an NPE-NN, we show that
an extra positive term exists in the quadratic penalty of the ex-post regret based on the result (1).
This term serves as a regularizer to penalize the “non-permutation-equivariance”. Moreover, this
regularizer also interferes the revenue maximization, and thus affects the learning performance of
NPE-NNs. This further explains the advantages of permutation-equivariance in auction design.

Experiments in extensive auction settings are conducted to verify our theory. We design permutation-
equivariant versions of RegretNet (RegretNet-PE and RegretNet-test) by projecting the RegretNet
[12] to the permutation-equivariant mechanism space in the training and test stage respectively. The
empirical results show that permutation-equivariance helps: (1) significantly improve the revenue
while maintain the same ex-post regret; (2) record the same revenue with a significantly lower
ex-post regret; and (3) narrow the generalization gaps between the training ex-post regret and its test
counterpart. These results fully support our theory.

Related works. Myerson completely solves the optimal auction design problem in one-item auctions
[23]. However, solutions are not clear when the number of bidders/items exceeds one [12]. Initial
attempts have been presented on the characterization of optimal auction mechanisms [20, 26, 9]
and algorithmic solutions [1, 2, 27]. Remarkable advances have been made in the required sample
complexity for learning the optimal auction mechanism in various settings, including single-item
auctions [5, 21, 16], multi-item single-bidder auctions [11], combinatorial auctions [3, 32], and
allocation mechanisms [24]. Machine learning-based auction design (automated auction design)
have obtained considerable progress [6, 7, 31]. The optimal auction design is modeled as a linear
programming problem [6, 7]. However, early works suffer from the scalability issues that the
number of the constraints grows exponentially when the bidder number and the item numbers
increase. To address this issue, recent works propose to learn the optimal auction mechanism by deep
learning. RegretNet is designed for multi-bidder and multi-item settings [12]. Then, RegretNet is
developed to meet more restrictive constraints, such as the budget condition [14] and the certifying
strategyproof condition [8]. Rahme et al. [29] propose the first equivariant neural network-based
auction mechanism design method with significant empirical advantages. Ivanov et al. [17] propose
a RegretFormer which (1) introduces attention layers to RegretNet to learn permutation-equivariant
auction mechanisms, and (2) adopts a new interpretable loss function to control the revenue-regret
trade-off. Duan et al. [10] extend the applicable domain to contextual settings. All these works
make remarkable contributions in designing new algorithms from the empirical aspect only. However,
the theoretical foundations are still elusive. To our best knowledge, our paper is the first work on
theoretically studying the benefits of permutation equivariance in auction design via deep learning.
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2 Notations and Preliminaries

Auction. Suppose n bidders are bidding m items in an auction. Every bidder i has her bidder-
context (feature) xi ∈ X , while every item j is associated with its item-context (feature) yj ∈ Y .
The bidder i has a private valuation vij ∈ V ⊂ R≥0 for the item j, which is sampled from
a conditioned distribution P(·|xi, yj). The value profile vi = (vi1, . . . , vim) is unknown to the
auctioneer. For the simplicity, we define x = (xT1 , . . . , x

T
n )

T , y = (y1, . . . , ym), v = (vT1 , . . . , v
T
n )

T ,
v−i = (vT1 , . . . , v

T
i−1, v

T
i+1, . . . , v

T
n )

T , and (v′i, v−i) = (vT1 , . . . , (v
′
i)

T . . . , vTn )
T .

Every bidder submits a bid profile bi to the auctioneer according to her valuation profile. Then, the
auctioneer determines a feasible item allocation g(b, x, y) and corresponding payments p(b, x, y) as
per an auction mechanism (g, p). Consequently, every bidder receives her utility as

ui(vi, b, x, y) =

m∑
j=1

gij(b, x, y) · vij − pi(b, x, y).

The auction mechanism (g, p) consists of an allocation rule g : Rn×m × Xn × Ym → Rn×m

and a payment rule p : Rn×m × Xn × Ym → Rn×m, where gij is the probability of allocating
item j to the bidder i, and pi =

∑m
j=1 pij is the price that the bidder i should pay. To avoid

allocating an item over once, the allocation rule is constrained such that
∑n

i=1 gij(b, x, y) ≤ 1
for all j ∈ [m]. Every vi in our notations can be replaced by bi. Thus, we can define the
similar notations: b−i = (bT1 , . . . , b

T
i−1, b

T
i+1, . . . , b

T
n )

T , (bi, v−i) = (vT1 , . . . , (bi)
T . . . , vTn )

T and
(vi, b−i) = (bT1 , . . . , (vi)

T . . . , bTn )
T .

Optimal auction mechanism. An auction mechanism (g, p) is defined to be dominant strategy
incentive compatible (DSIC), if truthful bidding is always a dominant strategy of every bidder; i.e.,

ui(vi, (vi, b−i), x, y) ≥ ui(vi, b, x, y),

for all i ∈ [n], v, b ∈ Vn×m, x ∈ Xn and y ∈ Ym. In addition, an auction mechanism (g, p) is called
individually rational (IR), if for any bidder-contexts x ∈ Xn, any item-contexts y ∈ Ym, any bidder
i ∈ [n] x ∈ Xn, valuation profile and bid profile v, b ∈ Vn×m, truthful bidding always leads to a
non-negative utility, i.e.,

ui(vi, (vi, b−i), x, y) ≥ 0.

If an auction mechanism is DSIC and IR, a rational bidder with an obvious dominant strategy will
play it (bidding truthfully). Moreover, an optimal auction mechanism is required to maximize the
auctioneer’s expected revenue rev = E(v,x,y)

[∑n
i=1 pi(v, x, y)

]
.

Auction design. The ex-post regret regi(v, x, y) for the bidder i is defined as

max
b′i∈Vm

ui(vi, (b
′
i, v−i), x, y)− ui(vi, v, x, y).

An auction mechanism (g, p) is DSIC, if and only if
∑n

i=1 regi(v, x, y) = 0 for any value pro-
file v ∈ Vn×m, bidder-context x ∈ Xn, and item-context y ∈ Ym. Suppose the payment
rule p satisfies pi(b, x, y) ≤

∑m
j=1 gij(b, x, y)bij , which implies that each bidder has a non-

negative utility. Then, the auction design can be modeled as a linear programming problem that
maximizes the expected revenue E(v,x,y)[

∑n
i=1 pi(v, x, y)] subject to the expected ex-post regret

E(v,x,y)[
∑n

i=1 regi(v, x, y)] = 0. Without loss of generality, the ex-post regret may refer to the
average of all bidders’ ex-post regrets.
Definition 2.1. Suppose the network’s parameter is ω, and the bidder i’s empirical payment and ex-
post regret are defined as 1

L

∑L
l=1 p

ω
i (v

(l), x(l), y(l)), and r̂egi(ω) =
1
L

∑L
l=1 reg

ω
i (v

(l), x(l), y(l)),
where the sample set {(v(l), x(l), y(l))}Ll=1 is i.i.d. sampled from the following prior distribution,
P(v, x, y) =

∏n,m
i,j=1 P(vij |xi, yj)PXi(xi)PYj (yj).

Equivariant mapping. We define a mapping f as G-equivariant if ψg ◦ f = f ◦ ρg for two chosen
group linear representations ρ and ψ and any g in group G.
Definition 2.2 (Permutation-Equivariant Mapping). A permutation-equivariant mapping is defined to
be f : Rn×m → Rn×m that for any instance x ∈ Rn×m, and permutation matrices σn ∈ Rn×n and
σm ∈ Rm×m, we have f(σnxσm) = σnf(x)σm.
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In this paper, we consider the bidder-permutation σn ∈ Rn×n and item-permutation σm ∈ Rm×m.
Specifically, we define a mapping f is bidder-symmetric or item-symmetric, if f(σnx) = σnf(x)
or f(xσm) = f(x)σm, respectively. Moreover, we define an auction mechanism (g, p) as bidder-
symmetric or item-symmetric, if the allocation rule g and the payment rule p are both bidder-
symmetric or item-symmetric.

Orbit averaging. For any feature mapping f : F → G, the orbit averaging Q on f is defined as
Qf = 1

|G|
∑

g∈G ψ
−1
g ◦ f ◦ ρg, where ρ and ψ are two chosen group representations acting on the

feature spaces F and G, respectively. Orbit averaging can project any mapping to be equivariant:

Proposition 2.3. Orbit averaging Q is a projection to the equivariant mapping space {f : ψ ◦ f =
f ◦ ρ}, i.e., ψ ◦ Qf = Qf ◦ ρ and Q2 = Q. In particular, if f is already equivariant, then Qf = f .

Moreover, Qu and Qreg refer to the utility and the ex-post regret induced by Qg and Qp. For
the simplicity, we denote the orbit averagings that modify the auction mechanism to be bidder-
symmetric, item-symmetric, and bidder/item-symmetric by bidder averaging Q1, item averaging Q2,
and bidder-item aggregated averaging Q3. Besides, a detailed proof of the feasibility of the projected
mechanisms can be found in Appendix A.1.

Hypothesis complexity. The generalizatbility to unseen data is usually measured by the generalization
bound, which depends on the hypothesis set’s complexity. To characterize the complexity of the
hypothesis set, we introduce the following definitions of covering numberN∞,1 and its corresponding
distance l∞,1. Based on the covering number, we can obtain a generalization bound in Theorem 3.6.

Definition 2.4 (l∞,1-distance). Let X be a feature space and F a space of functions from X to Rn.
The l∞,1-distance on the space F is defined as l∞,1(f, g) = maxx∈X (

∑n
i=1 |fi(x)− gi(x)|).

Definition 2.5 (Covering number). Covering number N∞,1(F , r) is the minimum number of balls
with radius r that can cover F under l∞,1-distance.

3 Theoretical Results

This section presents the theoretical results. For simplicity, we view p = (p1, . . . , pn)
T as a n× 1

matrix to present the prices the bidders should pay. We first prove that the permutation-equivariance
induces the same expected revenue and a smaller expected ex-post regret in Section 3.1. Next in
Section 3.2, we prove that the permutation-equivariant mechanism space has a smaller covering
number, which promises a smaller required sample complexity and a better generalization. Detailed
proofs are omitted from the main text and given in supplementary materials due to space limitation.

3.1 Benefits for Revenue and Ex-Post Regret

In this section, we discuss the benefits for the revenue and the ex-post regret in the conditions of
bidder-symmetry and item-symmetry separately, and then discuss the benefits when both of them
hold. Based on these results, we also study the learning process of non-permutation-equivariant
neural networks for auction design.

3.1.1 Benefits in the Bidder/Item-Symmetry Condition

When the bidders come from the same distribution, the joint valuation distribution f is invariant
under bidder-permutation, i.e. f(σnv, σnx, y) = f(v, x, y) for any σn ∈ Sn. Meanwhile, when
the items are indistinguishable, the joint distribution f is invariant under item-permutation, i.e.,
f(vσm, x, yσm) = f(v, x, y) for any σm ∈ Sm. Both conditions do not always hold simultaneously.
In this section, we study them separately.

To measure the “non-permutation-equivariance” of the mechanism, we introduce the conception of
regret gap between the projected mechanism and the original mechanism as below,

∆·(g, p; v, x, y) = max
v′∈Vn×m

n∑
i=1

ui(vi, (v
′
i, v−i), x, y)− max

v′∈Vn×m

n∑
i=1

[Q·u]i(vi, (v
′
i, v−i), x, y),

where v is the valuation profiles, vi is the valuation profile of bidder i, x is the bidder-context, y is the
item-context, and the orbit averaging Q· can be the bidder averaging Q1 or the item averaging Q2.
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The bidder averaging Q1 and the item averaging Q2 acting on the allocation rule g and the payment
rule p, respectively, are as below,

Q1g(v, x, y) =
1

n!

∑
σn∈Sn

σ−1
n g(σnv, σnx, y), Q1p(v, x, y) =

1

n!

∑
σn∈Sn

σ−1
n p(σnv, σnx, y),

Q2g(v, x, y) =
1

m!

∑
σm∈Sm

g(vσm, x, yσm)σ−1
m , and Q2p(v, x, y) =

1

m!

∑
σm∈Sm

p(vσm, x, yσm).

We thus can prove the following theorem that characterizes the benefits of permutation-equivariance
for revenue and ex-post regret in the condition of bidder/item-symmetry.
Theorem 3.1 (Benefits for revenue and ex-post regret in the condition of bidder/item-symmetry).
When the valuation distribution is invariant under permutations of bidders/items, the projected
mechanism has the same expected revenue and a smaller expected ex-post regret, that is,

E(v,x,y)

[ n∑
i=1

[Q·p]i(v, x, y)

]
= E(v,x,y)

[ n∑
i=1

pi(v, x, y)

]
, and (1)

E(v,x,y)

[ n∑
i=1

regi(v, x, y)

]
− E(v,x,y)

[ n∑
i=1

[Q·reg]i(v, x, y)

]
= E(v,x,y)

[
∆·(g, p; v, x, y)

]
≥ 0,

(2)

where p is the payment rule, reg is the ex-post regret, and Q· is the bidder/item averaging.

A smaller expected ex-post regret implies this mechanism is closer to the dominant strategy incentive
compatible condition. Conversely, and equivalently, when the expected ex-post regrets are fixed,
the projected auction mechanism has a larger expected revenue. For any auction mechanism, in the
bidder/item-symmetry condition, we can project it through the bidder/item averaging.
Remark 3.2. The mechanism space can be decomposed into the direct sum of the permutation-
equivariant mechanism space {M : QM =M} and the complementary space {N : QN = 0}
[13]. Thus, a mechanismM has a unique decomposition:M = QM+N . The pure permutation-
equivariant part QM contains all and only the “permutation-equivariance” of the mechanismM.
The pure non-permutation-equivariant part N is independent from the permutation-equivairance. In
this way, we may study the influence of permutation-equivariance by comparing the mechanismM
and its permutation equivariant part QM.

3.1.2 Interplay between Bidder-Symmetry and Item-Symmetry.

If the valuation distribution is invariant under both bidder-permutation and item-permutation, we
can project the mechanism to be permutation-equivariant with respect to both bidder and item in
two steps (by mapping Q1 ◦ Q2 or mapping Q2 ◦ Q1). Consequently, the projected mechanism has
the same expected revenue and a smaller expected ex-post regret. Equivalently, we can also project
an auction mechanism to be bidder-symmetric and item-symmetric immediately by the bidder-item
aggregated averaging Q3 as below,

Q3g(v, x, y) =
1

n!m!

∑
σn∈Sn

∑
σm∈Sm

σ−1
n g(σnvσm, σnx, yσm)σ−1

m , and

Q3p(v, x, y) =
1

n!m!

∑
σn∈Sn

∑
σm∈Sm

σ−1
n p(σnvσm, σnx, yσm).

We can prove that the bidder-item aggregated averaging Q3 is the composition of the orbit averaging
operators Q1 and Q2, as shown in the following lemma. This lemma shows that the order of Q1 and
Q2 would not influence their composition.
Lemma 3.3. The bidder-item aggregated averaging is the composition of bidder averaging and item
averaging: Q3 = Q1 ◦ Q2 = Q2 ◦ Q1.

Based on this lemma, we can prove the following theorem on the benefits of permutation-equivariance
for revenue and ex-post regret in the condition of both bidder-symmetry and item-symmetry.
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Theorem 3.4 (Benefits for revenue and ex-post regret in the condition of both bidder-symmetry
and item-symmetry). When the valuation distribution is invariant under both item-permutation and
item-permutation, then the projected mechanism has a same expected revenue and a smaller expected
ex-post regret, that is,

E(v,x,y)

[ n∑
i=1

Q3pi(v, x, y)

]
= E(v,x,y)

[ n∑
i=1

pi(v, x, y)

]
and

E(v,x,y)

[ n∑
i=1

regi(v, x, y)

]
− E(v,x,y)

[ n∑
i=1

[Q3reg]i(v, x, y)

]
= E(v,x,y)

[
∆3(g, p; v, x, y)

]
≥ 0,

where p is the payment rule, reg is the ex-post regret, andQ3 is the bidder-item aggregated averaging.

The difference between bidder-symmetry and item-symmetry is significant in practice. For example,
for a symmetric valuation distribution, when the mechanism is already bidder-symmetric but not
item-symmetric, we can project it to be item-symmetric to gain an extra benefit from item-symmetry.
That means, the two regret gaps induced by Q1 and Q2 are “additive” as below,

∆3(g, p; v, x, y) = ∆1(g, p; v, x, y) + ∆2(Q1g,Q1p; v, x, y).

In general, E[∆2(g, p; v, x, y)] ̸= E[∆2(Q1g,Q1p; v, x, y)] and thus E[∆3(g, p; v, x, y)] ̸=
E[∆1(g, p; v, x, y)] + E[∆2(g, p; v, x, y)]. Thus, the benefits from bidder-symmetry and item-
symmetry are “additive” but not strictly “independent”.

3.1.3 Insights on Training Non-Permutation-Equivariant Mechanism

Because the expected revenue is always the same for the original mechanism and the projected
permutation-equivariant mechanism, we only consider the gradient caused by the expected ex-post
regret. We can decompose the original expected ex-post regret into the sum of the expected ex-post
regret of the projected mechanism and the expectation of the regret gap as below,

E(v,x,y)

[ n∑
i=1

regi(v, x, y)

]
= E(v,x,y)

[ n∑
i=1

[Q3reg]i(v, x, y)

]
+ E(v,x,y)

[
∆3(g, p; v, x, y)

]
.

The regret gap ∆3(g, p; ·) follows from the “non-permutation-equivariance” of the mechanismM.
When the distance l(M,QM) tends to 0, the regret gap converges to 0. When the auction mechanism
has a negligible ex-post regret, the expectation of the regret gap is also close to 0. That means, the
mechanism is close to being permutation-equivariant. However, even using a symmetric dataset or
adopting data augmentation in training, the learned mechanism will not be permutation-equivariant
in general [19]. As a result, to achieve negligible ex-post regret, the non-permutation-equivariant
models need to learn more samples to approach permutation-equivariance. That is because the
non-permutation-equivariant part (expected regret gap) would mislead the gradient of the expected
regret but have no benefit to the expected revenue and the expected ex-post regret.

On the other hand, the regret gap can be viewed as a regularizer in the ex-post regret to penalize
the “non-permutation-equivariance” of the mechanism. When the optimizer tries to minimize the
ex-post regret, the auction mechanism approaches to be permutation-equivariant. Therefore, if the
mechanism achieves a negligible ex-post regret, it is almost to be permutation-equivariant. This
result can explain why RegretNet struggles to find permutation-equivariant auction mechanisms
[29]. However, in complex settings, it will be harder for non-permutation-equivariant models to
approach the negligible ex-post regret. It can explain why the permutation-equivariant models show
a significant improvement in complex settings, compared with that they have similar performances
in simple settings [10, 17], which shows the great importance of adopting permutation-equivariant
models in complex settings.

3.2 Benefits for Generalization

In this section, we study permutation-equivariance from the aspect of generalizability [22, 15], which
characterizes the performance gap of a learned mechanism on collected training data and unseen data.

We first study the covering number of the permutation-equivariant mechanism space. Let U = {uω :
ω ∈ Ω} and P = {pω : ω ∈ Ω} be the spaces of all possible utilities and payment rules, and
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Q·U = {Q·u : u ∈ U} and Q·P = {Q·p : p ∈ P} the spaces of all projected utilities and payment
rules. In addition, let N∞,1(U , r) and N∞,1(P, r) be the minimum numbers of balls with radius
r that can cover U and P under l∞,1-distance, respectively. We obtain the following result, which
indicates the projected permutation-equivariant mechanism space has smaller covering numbers.
Theorem 3.5 (Covering number of the permutation-equivariant mechanism space). The space of all
projected bidder-symmetric mechanisms has smaller covering numbers, that is,

N∞,1(Q1U , r) ≤ N∞,1(U , r) and N∞,1(Q1P, r) ≤ N∞,1(P, r).
The space of all projected item-symmetric mechanisms has smaller covering numbers, that is,

N∞,1(Q2U , r) ≤ N∞,1(U , r) and N∞,1(Q2P, r) ≤ N∞,1(P, r).

Intuitively, the orbit averaging Q narrows the distance between two mechanisms: l(QM,QM′) ≤
l(M,M′), for any two mechanisms. Then, any r-coverA for space U or space P induces an r-cover
QA for space QU or space QP .

Combining with Lemma 3.3, we have the following results,

N∞,1(Q3U , r) = N∞,1(Q1Q2U , r) ≤ N∞,1(Q2U , r) ≤ N∞,1(U , r) and
N∞,1(Q3P, r) = N∞,1(Q1Q2P, r) ≤ N∞,1(Q2P, r) ≤ N∞,1(P, r).

We then prove that two generalization bounds of permutation-equivariant mechanisms, which charac-
terize the gap between the expected revenue/ex-post regret and their empirical counterparts. Similar
generalization results are existing in previous works [10, 12].
Theorem 3.6 (Generalization bounds of permutation-equivariant mechanisms). If for any bidder, her
valuation satisfies that vi(S) ≤ 1 for any S ⊂ [m], then with probability at least 1− δ, we have the

following inequalities with ϵ ≥
√

9n2

2L (log 4
δ +max{logN∞,1(P, ϵ3 ), logN∞,1(U , ϵ6 )}),∣∣∣∣E[ n∑

i=1

pωi (v, x, y)

]
− 1

L

L∑
l=1

n∑
i=1

pωi (v
(l), x(l), y(l))

∣∣∣∣ ≤ ϵ, and (3)

∣∣∣∣E[ n∑
i=1

regωi (v, x, y)

]
−

n∑
i=1

r̂egi(ω)

∣∣∣∣ ≤ ϵ, (4)

where L is the number of samples, U and P are the spaces of all possible utilities and payment rules.

Equivalently, we can rewrite this result in the form of the sample complexity,
Corollary 3.7. For any ϵ > 0, δ ∈ (0, 1), and mechanism parameter ω, when the sample complexity

L ≥ 9n2

2ϵ2

(
log 4

δ + max
{
logN∞,1(P, ϵ3 ), logN∞,1(U , ϵ6 )

})
, with probability at least 1 − δ, the

generalization bounds, eqs. (3) and (4), hold.
Remark 3.8. Combining Theorem 3.5, we have proved that the permutation-equivariance can
improve the generalizability.

4 Experiments

This section presents our experimental results. More details and results are presented in the supple-
mentary materials.

Model architecture. We project RegretNet [12] to the permutation-equivariant mechanism space via
employing bidder-item aggregated averaging for the bidder-symmetry and item-symmetry condition.
The projected model is called RegretNet-PE. We also project the well-trained RegretNet, called
RegretNet-Test. Specifically, RegretNet is an auction mechanism defined as (gω, pω), in which
both the allocation rule gω and the payment rule pω are neural networks that consist of three fully-
connected layers, and ω is the overall model parameter of the auction mechanism. The detailed
architecture is given in the supplementary materials.

Comparison with EquivariantNet. RegretNet uses two feed-forward fully-connected networks
to learn the allocation rule and payment rule, respectively. We denote the weight matrix in the

7



Table 1: Experimental results. "n×m Uniform" refers that there are n bidders and m items, and the
valuations are i.i.d. drawn from the uniform distribution U [0, 1]. To simplify, we multiply all results
by a factor of 105 for the ex-post regret and generalization error (GE).

Method
2× 1 Uniform 3× 1 Uniform 5× 1 Uniform

Revenue Regret GE Revenue Regret GE Revenue Regret GE

Optimal 0.417 0 - 0.531 0 - 0.672 0 -

RegretNet 0.415 17.4 6.00 0.535 18.3 11.4 0.658 15.9 6.40

RegretNet-Test 0.415 16.3 - 0.535 13.3 - 0.658 6.50 -
RegretNet-PE 0.420 14.6 3.90 0.541 16.4 10.2 0.677 13.2 5.10

Table 2: Experimental results. "n×m Uniform" refers that there are n bidders and m items, and the
valuations are i.i.d. sampled from the uniform distribution U [0, 1].

Method
1× 2 Uniform 2× 2 Uniform

Revenue Regret Revenue Regret

RegretNet 0.562 0.00061 0.870 0.00070

EquivariantNet 0.551 0.00013 0.873 0.00100

RegretNet-Test 0.562 0.00052 0.870 0.00054

RegretNet-PE 0.563 0.00037 0.913 0.00067

layer ℓ as W (ℓ). Both EquivariantNet and RegretNet-PE inherit the architecture of RegretNet
(with some modifications), but utilize different approaches to realize the permutation-equivariance.
EquivariantNet applies parameter-sharing in every layer during training, to constrain W (ℓ) to be
equivariant. In contrast, RegretNet-PE employs orbit averaging to be permutation-equivariant.
Specifically, RegretNet-PE adopts a weight matrix IK ⊗W (ℓ)(ρTg1 . . . ρ

T
gK )T in the first layer, weight

matrices IK ⊗W (ℓ) in the following layers, and multiples a matrix (ρ−1
g1 , . . . , ρ

−1
gK ) to the output

layer, where K is the scale of the group G = {g1, . . . , gK}, ρgk represents the permutation operator
on bidders and items, IK is an identity matrix, and ⊗ is the Kronecker product. It is worth noting
that RegretNet-PE is only designed for verifying our theory.

Auction settings. We first adopt the two-bidder single-item, two-bidder single-item, three-bidder
single-item, and five-bidder single-item settings in the experiments that compare the learned mech-
anisms with theoretical optimal mechanisms. The optimal auction mechanism for any single-item
auction is known [23]. We thus compare the mechanisms leaned by our method with the optimal
auction mechanisms in the single-item settings. Also, we compare RegretNet-PE and EquivariantNet
in the one-bidder, two-item setting, and the two-bidder, two-item setting. Besides, we employ a
multivariate uniform distribution U [0, 1]m to model the bidder valuation profiles. In all settings, we
sample 640,000 data points for training and 5,000 points for test. Due to the space limitation, we
place the results of two-bidder five-item and five-bidder three-item settings in Appendix B.2.

Model training. We optimize the auction mechanism model via solving the following optimization
problem, following the standard settings [12, 29, 10, 17],

Lρ(ω, λ) = −
1

L

L∑
l=1

n∑
i=1

pωi (v
(l), x(l), y(l)) +

n∑
i=1

λir̂egi(ω) +
ρ

2

( n∑
i=1

r̂egi(ω)
)2

,

where λ ∈ Rn is the Lagrange multiplier and ρ > 0 is the factor of the quadratic regularization term.
During the training process, the objective function Lρ(ω, λ) is minimized via Adam with a learning
rate of 0.001 with respect to the model parameter ω and the Lagrange multiplier λ is updated once in
every 100 iterations, until the ex-post regret is smaller than 0.001. The regularization factor ρ is set
to 1.0 initially and gradually increased along the training process. In calculating the best bid profile
v′i of every bidder i, we first randomly initialize the bid profiles once in training and 1,000 times in
test, optimize each of them individually via Adam with the same settings, and take the best one as the
approximated best bidding.
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Evaluation. We leverage three metrics to evaluate the performance of the auction mechanism,
which are: (1) the empirical revenue r̂ev, (2) the empirical ex-post regret averaging across all
bidders, i.e., r̂eg = 1

n

∑n
i=1 r̂egi, and (3) the generalization error defined on top of regrets, i.e.,

GE = |r̂egtest − r̂egtrain|, where r̂egtest and r̂egtrain are the empirical ex-post regrets during test
and training, respectively.

Computing resource. The experiments are conducted on 1 GPU (NVIDIA® Tesla® V100 16GB)
and 10 CPU cores (Intel® Xeon® Processor E5-2650 v4 @ 2.20GHz).

Experimental results. We train a RegretNet and a RegretNet-PE on the training data. The well-
trained RegretNet is then projected to be permutation-equivariant, denoted as “RegretNet-Test”. The
results are collected in Tables 1 and 2.

From Tables 1 and 2, we observe that (1) compared to RegretNet, RegretNet-PE has a significantly
higher revenue with a lower ex-post regret, and narrows the generalization gap between the training
ex-post regret and its test counterpart; (2) compared to RegretNet, RegretNet-Test receives the
same revenue with a significantly lower ex-post regret; and (3) under comparable ex-post regrets,
RegretNet-PE has considerably higher revenue than EquivariantNet, while all permutation-equivariant
models (RegretNet-Test and RegretNet-PE) can outperform RegretNet. These results show significant
benefits of permutation-equivariance on revenue, ex-post regret, and generalizability, which fully
supports our theoretical findings in Theorems 3.1, 3.4, and 3.5.

5 Conclusion and future works

In this paper, under additive valuation and symmetric valuation setting, we study the benefits of
permutation-equivariance in auction mechanisms in two aspects: a better performance and a better
generalization. First, we prove a smaller expected ex-post regret and the same expected revenue when
projecting a mechanism to be permutation-equivariant. Next, we propose the permutation-equivariant
mechanism space has a smaller covering number, which promises the permutation-equivariant models
a better generalization. Extensive experiments are conducted to verify our theoretical results. Our
results help understand the optimal auction mechanisms’ characterization and the learning processes
difference between non-equivariant models and equivariant models.

Beyond the additive valuation setting, an interesting direction is to extend our results to other
conditions, including the combinatorial and the unit-demand auctions. Meanwhile, the understanding
of the difference in the aspect of the training process between non-equivariant models and equivariant
models is still elusive.

Social impact. Our results can help understand and design optimal auction mechanisms for symmetric
valuation distribution. As a result, our work could inspire more near-optimal auction mechanisms
and promote economic growth. No potential negative social impact is identified.
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A Proofs

This appendix collects all proofs omitted from the main text due to space limitation.

A.1 Proofs about Orbit Averaging

In this section, we prove Proposition 2.3 and the feasibility of the projected mechanisms. For
simplicity, we use the notations σn(i) and σm(j) to present the ranks of the bidder i and the item j
after bidder-permutation σn and item-permutation σm, respectively.

Proof of Proposition 2.3. By the definition of orbit averaging Q, we have

Qf ◦ ρg(x) =
1

|G|
∑
h∈G

ψ−1
h f(ρhρgx) = ψg ◦

1

|G|
∑
h∈G

ψ−1
hg f(ρhgx) = ψg ◦ Qf(x).

In addition, if f is equivariant, then we have

Qf =
1

|G|
∑
g∈G

ψ−1
g ◦ f ◦ ρg =

1

|G|
∑
g∈G

ψ−1
g ◦ ψg ◦ f =

1

|G|
∑
g∈G

f = f.

Thus, orbit averaging is a projection to equivariant function space and fixes all equivariant functions.
In addition, orbit averaging fixes all equivariant functions. That means, every equivariant function
can be obtained by orbit averaging. In this sense, every equivariant models are contained in the orbit
averaging framework.

Proof of the feasibility of projected mechanisms. We verify all feasibility conditions for the
projected mechanisms as follows.

Firstly, for the allocation rule, we have

n∑
i=1

(Q1g)ij(v, x, y) =
1

n!

n∑
i=1

∑
σn∈Sn

gσ−1
n (i)j(σnv, σnx, y)

=
1

n!

∑
σn∈Sn

[ n∑
i=1

gσ−1
n (i)j(σnv, σnx, y)

]
≤ 1

n!

∑
σn∈Sn

1 = 1,
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n∑
i=1

(Q2g)ij(v, x, y) =
1

m!

n∑
i=1

∑
σm∈Sm

giσ−1
m (j)(vσm, x, yσm)

=
1

m!

∑
σm∈Sm

[ n∑
i=1

giσ−1
m (j)(vσm, x, yσm)

]
≤ 1

m!

∑
σm∈Sm

1 = 1,

and
n∑

i=1

(Q3g)ij(v, x, y) =
1

n!m!

n∑
i=1

∑
σn∈Sn

∑
σm∈Sm

gσ−1
n (i)σ−1

m (j)(σnvσm, σnx, yσm)

=
1

n!m!

∑
σn∈Sn

∑
σm∈Sm

[ n∑
i=1

gσ−1
n (i)σ−1

m (j)(σnvσm, σnx, yσm)

]
≤ 1

n!m!

∑
σn∈Sn

∑
σm∈Sm

1 = 1,

thus we know the projected allocation rule is also feasible, which will never allocate one item more
than once.

In addition, for the payment rule, we have

(Q1p)i(v, x, y) =
1

n!

∑
σn∈Sn

pσ−1
n (i)(σnv, σnx, y)

≤ 1

n!

∑
σn∈Sn

[ m∑
j=1

gσ−1
n (i)j(σnv, σnx, y)(σnv)σ−1

n (i)j

]

=

m∑
j=1

[
1

n!

∑
σn∈Sn

gσ−1
n (i)j(σnv, σnx, y)vij

]
≤

m∑
j=1

(Q1g)ij(v, x, y)vij ,

(Q2p)i(v, x, y) =
1

m!

∑
σm∈Sm

pi(vσm, x, yσm)

≤ 1

m!

∑
σm∈Sm

[ m∑
j=1

gij(vσm, x, yσm)(vσm)ij

]

=

m∑
j=1

[
1

m!

∑
σm∈Sm

giσ−1
m (j)(vσm, x, yσm)vij

]
≤

m∑
j=1

(Q2g)ij(v, x, y)vij ,

and

(Q3p)i(v, x, y) =
1

n!m!

∑
σn∈Sn

∑
σm∈Sm

pσ−1
n (i)(σnvσm, σnx, yσm)

≤ 1

n!m!

∑
σn∈Sn

∑
σm∈Sm

[ m∑
j=1

gσ−1
n (i)j(σnvσm, σnx, yσm)(σnvσm)σ−1

n (i)j

]

=

m∑
j=1

[
1

n!m!

∑
σn∈Sn

∑
σm∈Sm

gσ−1
n (i)σ−1

m (j)(σnvσm, σnx, yσm)vij

]
≤

m∑
j=1

(Q3g)ij(v, x, y)vij ,

thus, we have completed this proof.

A.2 Proof of Theorem 3.1

In this section, we proves Theorem 3.1.

Proof of Theorem 3.1. We first study the part in the condition of bidder-symmetry; i.e., the orbit
averaging Q· is the bidder averaging Q1, acting on the allocation rule g and the payment rule p as
below,

Q1g(v, x, y) =
1

n!

∑
σn∈Sn

σ−1
n g(σnv, σnx, y),
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and

Q1p(v, x, y) =
1

n!

∑
σn∈Sn

σ−1
n p(σnv, σnx, y).

Step 1: We first prove that the auction mechanism has the same expected revenue after projection,
i.e.,

E
(v,x,y)

[ n∑
i=1

[Q1p]i(v, x, y)

]
= E

(v,x,y)

[ n∑
i=1

pi(v, x, y)

]
.

Given that for all permutation π,

n∑
i=1

pi =

n∑
i=1

pπ(i),

we have the following equation,

E
(v,x,y)

[ n∑
i=1

Q1pi(v, x, y)

]
= E

(v,x,y)

[
1

n!

n∑
i=1

∑
σn∈Sn

pσ−1
n (i)(σnv, σnx, y)

]

= E
(v,x,y)

[
1

n!

n∑
i=1

∑
σn∈Sn

pi(σnv, σnx, y)

]
=

1

n!

n∑
i=1

∑
σn∈Sn

E
(v,x,y)

[
pi(σnv, σnx, y)

]

=
1

n!

n∑
i=1

∑
σn∈Sn

E
(v,x,y)

[
pi(v, x, y)

]
=

n∑
i=1

E
(v,x,y)

[
pi(v, x, y)

]
.

Thus, we complete the first step.

Step 2: We then prove that the sum of all bidders’ utilities remains the same after projection, i.e.,

E
(v,x,y)

[ n∑
i=1

[Q1u]i(vi, v, x, y)

]
= E

(v,x,y)

[ n∑
i=1

ui(vi, v, x, y)

]
.

Given that

n∑
i=1

gπ(i)jvπ(i)j =

n∑
i=1

gijvij ,
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we have the following equation,

E
(v,x,y)

[ n∑
i=1

[Q1u]i(vi, v, x, y)

]

= E
(v,x,y)

[ n∑
i=1

[ m∑
j=1

[Q1g]ij(v, x, y)vij − [Q1p]i(v, x, y)
]]

= E
(v,x,y)

[ n∑
i=1

m∑
j=1

[Q1g]ij(v, x, y)vij

]
− E

(v,x,y)

[ n∑
i=1

pi(v, x, y)

]

= E
(v,x,y)

[
1

n!

n∑
i=1

m∑
j=1

∑
σn∈Sn

gσ−1
n (i)j(σnv, σnx, y)vij

]
− E

(v,x,y)

[ n∑
i=1

pi(v, x, y)

]

=
1

n!

∑
σn∈Sn

E
(v,x,y)

[ n∑
i=1

m∑
j=1

gσ−1
n (i)j(σnv, σnx, y)[σnv]σ−1

n (i)j

]
− E

(v,x,y)

[ n∑
i=1

pi(v, x, y)

]

=
1

n!

∑
σn∈Sn

E
(v,x,y)

[ n∑
i=1

m∑
j=1

gij(σnv, σnx, y)[σnv]ij

]
− E

(v,x,y)

[ n∑
i=1

pi(v, x, y)

]

=
1

n!

∑
σn∈Sn

E
(v,x,y)

[ n∑
i=1

m∑
j=1

gij(v, x, y)vij

]
− E

(v,x,y)

[ n∑
i=1

pi(v, x, y)

]

= E
(v,x,y)

[ n∑
i=1

m∑
j=1

gij(v, x, y)vij

]
− E

(v,x,y)

[ n∑
i=1

pi(v, x, y)

]

= E
(v,x,y)

[ n∑
i=1

ui(vi, v, x, y)

]
.

Thus, we have completed the second step.

Step 3: We lastly prove that the auction mechanism has a smaller ex-post regret after projection,
i.e.,

E
[

max
v′∈Vn×m

n∑
i=1

[Q1u]i(vi, (v
′
i, v−i), x, y)

]
≤ E

[
max

v′∈Vn×m

n∑
i=1

u(vi, (v
′
i, v−i), x, y)

]
.

For the simplicity, we denote
m∑
j=1

gijvij by ⟨gi, vi⟩. Then, we have,

E
(v,x,y)

[
max

v′∈Vn×m

n∑
i=1

[Q1u]i
(
vi, (v

′
i, v−i), x, y

)]

= E
(v,x,y)

[
max

v′∈Vn×m

n∑
i=1

m∑
j=1

[Q1g]ij
(
(v′i, v−i), x, y

)
vij − [Q1p]i

(
(v′i, v−i), x, y

)]

= E
(v,x,y)

[
max

v′∈Vn×m

n∑
i=1

〈
[Q1g]i

(
(v′i, v−i), x, y

)
, vi

〉
− [Q1p]i

(
(v′i, v−i), x, y

)]

= E
(v,x,y)

[
max

v′∈Vn×m

n∑
i=1

1

n!

∑
σn∈Sn

〈
gσ−1

n (i)

(
σn(v

′
i, v−i), σnx, y

)
, vi

〉
− pσ−1

n (i)

(
σn(v

′
i, v−i), σnx, y

)]
.

Combining the following inequality,

max
z

K∑
k=1

fk(z) ≤
K∑

k=1

max
z

fk(z),
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we have that

E
(v,x,y)

[
max

v′∈Vn×m

n∑
i=1

1

n!

∑
σn∈Sn

〈
gσ−1

n (i)

(
σn(v

′
i, v−i), σnx, y

)
, vi

〉
− pσ−1

n (i)

(
σn(v

′
i, v−i), σnx, y

)]

≤ E
(v,x,y)

[
1

n!

∑
σn∈Sn

max
v′∈Vn×m

n∑
i=1

〈
gσ−1

n (i)

(
σn(v

′
i, v−i), σnx, y

)
, vi

〉
− pσ−1

n (i)

(
σn(v

′
i, v−i), σnx, y

)]

=
1

n!

∑
σn∈Sn

E
(v,x,y)

[
max

v′∈Vn×m

n∑
i=1

〈
gσ−1

n (i)

(
σn(v

′
i, v−i), σnx, y

)
, vi

〉
− pσ−1

n (i)

(
σn(v

′
i, v−i), σnx, y

)]

=
1

n!

∑
σn∈Sn

E
(v,x,y)

[
max

v′∈Vn×m

n∑
i=1

ui
(
vi, (v

′
i, v−i), x, y

)]

= E
(v,x,y)

[
max

v′∈Vn×m

n∑
i=1

ui
(
vi, (v

′
i, v−i), x, y

)]
.

We thus have completed the proof of eqs. (1) and (2) when the orbit averaging Q· is the condition of
bidder-symmetry.

Then, we prove this theorem in the condition of item-symmetry; i.e., the orbit averaging Q· is the
item averaging Q2, acting on the allocation rule g and the payment rule p as shown below,

Q2g(v, x, y) =
1

m!

∑
σm∈Sm

g(vσm, x, yσm)σ−1
m ,

and,

Q2p(v, x, y) =
1

m!

∑
σm∈Sm

p(vσm, x, yσm).

Step 1: We first prove that the auction mechanism has the same expected revenue after projection,
i.e.,

E
(v,x,y)

[ n∑
i=1

[Q2p]i(v, x, y)

]
= E

(v,x,y)

[ n∑
i=1

pi(v, x, y)

]
.

Since the valuation joint distribution is invariant under bidder permutation, we have
E(v,x,y)[f(vσm, x, yσm)] = E(v,x,y)[f(v, x, y)]. Then, we have

E
(v,x,y)

[ n∑
i=1

[Q2p]i(v, x, y)

]

= E
(v,x,y)

[
1

m!

n∑
i=1

∑
σm∈Sm

pi(vσm, x, yσm)

]

=
1

m!

n∑
i=1

∑
σm∈Sm

E
(v,x,y)

[
pi(vσm, x, yσm)

]

=
1

m!

n∑
i=1

∑
σm∈Sm

E
(v,x,y)

[
pi(v, x, y)

]
=

n∑
i=1

E
(v,x,y)

[
pi(v, x, y)

]
.

We have thus completed the first step.

Step 2: We then prove that the sum of all bidders’ utilities remains same after projection, i.e.,

E
(v,x,y)

[ n∑
i=1

[Q2u]i(vi, v, x, y)

]
= E

(v,x,y)

[ n∑
i=1

ui(vi, v, x, y)

]
.
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Given that for all permutation π,

m∑
j=1

giπ(j)viπ(j) =

m∑
j=1

gijvij ,

we have the following equation,

E
(v,x,y)

[ n∑
i=1

[Q2u]i(vi, v, x, y)

]

= E
(v,x,y)

[ n∑
i=1

[ m∑
j=1

[Q2g]ij(v, x, y)vij − [Q2p]i(v, x, y)
]]

= E
(v,x,y)

[ n∑
i=1

m∑
j=1

[Q2g]ij(v, x, y)vij

]
− E

(v,x,y)

[ n∑
i=1

pi(v, x, y)

]

= E
(v,x,y)

[
1

m!

n∑
i=1

m∑
j=1

∑
σm∈Sm

giσ−1
m (j)(vσm, x, yσm)vij

]
− E

(v,x,y)

[ n∑
i=1

pi(v, x, y)

]

=
1

m!

∑
σm∈Sm

E
(v,x,y)

[ n∑
i=1

m∑
j=1

giσ−1
m (j)(vσm, x, yσm)[vσm]iσ−1

m (j)

]
− E

(v,x,y)

[ n∑
i=1

pi(v, x, y)

]

=
1

m!

∑
σm∈Sm

E
(v,x,y)

[ n∑
i=1

m∑
j=1

gij(vσm, x, yσm)[vσm]ij

]
− E

(v,x,y)

[ n∑
i=1

pi(v, x, y)

]

=
1

m!

∑
σm∈Sm

E
(v,x,y)

[ n∑
i=1

m∑
j=1

gij(v, x, y)vij

]
− E

(v,x,y)

[ n∑
i=1

pi(v, x, y)

]

= E
(v,x,y)

[ n∑
i=1

m∑
j=1

gij(v, x, y)vij

]
− E

(v,x,y)

[ n∑
i=1

pi(v, x, y)

]

= E
(v,x,y)

[ n∑
i=1

ui(vi, v, x, y)

]
.

Thus, we have completed the second step.

Step 3: We lastly prove that the auction mechanism have a smaller ex-post regret after projection,
i.e.,

E
[

max
v′∈Vn×m

n∑
i=1

[Q2u]i(vi, (v
′
i, v−i), x, y)

]
≤ E

[
max

v′∈Vn×m

n∑
i=1

u(vi, (v
′
i, v−i), x, y)

]
.

By the definition of the utility u and the item averaging Q2, we have

E
(v,x,y)

[
max

v′∈Vn×m

n∑
i=1

[Q2u]i
(
vi, (v

′
i, v−i), x, y

)]

= E
(v,x,y)

[
max

v′∈Vn×m

n∑
i=1

m∑
j=1

[Q2g]ij
(
(v′i, v−i), x, y

)
vij − [Q2p]i

(
(v′i, v−i), x, y

)]

= E
(v,x,y)

[
max

v′∈Vn×m

n∑
i=1

〈
[Q2g]i

(
(v′i, v−i), x, y

)
, vi

〉
− [Q2p]i

(
(v′i, v−i), x, y

)]

= E
(v,x,y)

[
max

v′∈Vn×m

n∑
i=1

1

m!

∑
σm∈Sm

〈
gi
(
(v′i, v−i)σm, x, yσm

)
σ−1
m , vi

〉
− pi

(
(v′i, v−i)σm, x, yσm

)]
.

17



Combining the following inequality

max
z

K∑
k=1

fk(z) ≤
K∑

k=1

max
z

fk(z),

we have

E
(v,x,y)

[
max

v′∈Vn×m

n∑
i=1

1

m!

∑
σm∈Sm

〈
gi
(
(v′i, v−i)σm, x, yσm

)
σ−1
m , vi

〉
− pi

(
(v′i, v−i)σm, x, yσm

)]

≤ E
(v,x,y)

[
1

m!

∑
σm∈Sm

n∑
i=1

max
v′∈Vn×m

〈
gi
(
(v′i, v−i)σm, x, yσm

)
σ−1
m , vi

〉
− pi

(
(v′i, v−i)σm, x, yσm

)]

=
1

m!

∑
σm∈Sm

E
(v,x,y)

[
max

v′∈Vn×m

n∑
i=1

〈
gi
(
(v′i, v−i)σm, x, yσm

)
, viσm

〉
− pi

(
(v′i, v−i)σm, x, yσm

)]

=
1

m!

∑
σm∈Sm

E
(v,x,y)

[
max

v′∈Vn×m

n∑
i=1

ui
(
vi, (v

′
i, v−i), x, y

)]

= E
(v,x,y)

[
max

v′∈Vn×m

n∑
i=1

ui
(
vi, (v

′
i, v−i), x, y

)]
.

We thus have proved this theorem in the condition of item-symmetry.

The proofs are completed.

A.3 Proof of Lemma 3.3

In this section, we present the proof of Lemma 3.3.

Proof of Lemma 3.3. Both the bidder averaging and the item averaging are linear. Thus, we have the
following results,

Q1 ◦ Q2f(v, x, y)

=Q1

[
1

m!

∑
σm∈Sm

f(vσm, x, yσm)σ−1
m

]
=

1

n!

∑
σn∈Sn

σ−1
n

[
1

m!

∑
σm∈Sm

f(σnvσm, σnx, yσm)σ−1
m

]
=

1

n!m!

∑
σn∈Sn

∑
σm∈Sm

σ−1
n f(σnvσm, σnx, yσm)σ−1

m = Q3f(v, x, y),

and

Q2 ◦ Q1f(v, x, y)

=Q2

[
1

n!

∑
σn∈Sn

σ−1
n f(σnv, σnx, y)

]
=

1

m!

∑
σm∈Sm

[
1

n!

∑
σn∈Sn

σ−1
n f(σnvσm, σnx, yσm)

]
σ−1
m

=
1

m!n!

∑
σn∈Sn

∑
σm∈Sm

σ−1
n f(σnvσm, σnx, yσm)σ−1

m = Q3f(v, x, y).

The above two equations hold for any f . Then, we may prove that

Q3 = Q1 ◦ Q2 = Q2 ◦ Q1,

which is exactly the claim of this theorem.

The proof is completed.
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A.4 Proof of Theorem 3.4

In this section, we apply our Lemma 3.3 and Theorem 3.1 to prove Theorem 3.4.

Proof of Theorem 3.4. For the simplicity, we rewrite Q3p and Q3reg as Q2(Q1p) and Q2(Q1reg),
respectively. Then, for a payment rule p, we have that,

E
(v,x,y)

[ n∑
i=1

[Q3p]i(v, x, y)

]

= E
(v,x,y)

[ n∑
i=1

[Q2(Q1p)]i(v, x, y)

]
= E

(v,x,y)

[ n∑
i=1

[Q1p]i(v, x, y)

]

= E
(v,x,y)

[ n∑
i=1

pi(v, x, y)

]
.

Also, we have the following result,

E
(v,x,y)

[ n∑
i=1

[Q3reg]i(v, x, y)

]

= E
(v,x,y)

[ n∑
i=1

[Q2(Q1reg)]i(v, x, y)

]
≤ E

(v,x,y)

[ n∑
i=1

[Q1reg]i(v, x, y)

]

≤ E
(v,x,y)

[ n∑
i=1

regi(v, x, y)

]
.

Moreover, we have the following result on the regret gap ∆3,

E
(v,x,y)

[∆3(g, p; v, x, y)] = E
(v,x,y)

[∆1(g, p; v, x, y)] + E
(v,x,y)

[∆2(Q1g,Q1p; v, x, y)] ≥ 0.

This proof is completed.

A.5 Proof of Theorem 3.5

In this section, we present the proof of Theorem 3.5.

We start with the definitions or notations necessary for our proof. We define the allocation rule space
and the payment rule space as follows,

G = {gω : ω ∈ Ω} and P = {pω : ω ∈ Ω},
where ω is the auction mechanism parameter and Ω is the set of all feasible parameters. We then
define the induced utility and ex-post regret spaces as follows,

U =
{
uω : uωi (v

′
i, v, x, y) =

m∑
j=1

gωij(v, x, y)v
′
ij − pωi (v, x, y)

}
,

and
R =

{
regω : regωi (v, x, y) = max

v′
i

uω(vi, (v
′
i, v−i), x, y)− uω(vi, v, x, y)

}
.

Then, the l∞,1-distance on U and P is defined as below,

l∞,1(u, u
′) = max

(v,v′
i,x,y)

( n∑
i=1

|ui(vi, (v′i, v−i), x, y)− u′i(vi, (v′i, v−i), x, y)|
)
,

and

l∞,1(p, p
′) = max

(v,x,y)

( n∑
i=1

|pi(v, x, y)− p′i(v, x, y)|
)
.

We now present the proof of Theorem 3.5.
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Proof of Theorem 3.5. We prove Theorem 3.5 in two steps: (1) we first prove that the distance
between any two mechanisms is smaller when we project them to be permutation-equivariant; (2)
then, we prove that the smaller distance implies a smaller covering number.

Step 1: We prove that the distance between two mechanisms becomes smaller after projection, i.e.,

l∞,1(Q·p,Q·p
′) ≤ l∞,1(p, p

′),

and
l∞,1(Q·u,Q·u

′) ≤ l∞,1(u, u
′),

where u, u′ ∈ U , p, p′ ∈ P , and Q· = Q1 or Q2.

When Q· is Q1, we have that

l∞,1(Q1p,Q1p
′)

= max
(v,x,y)

n∑
i=1

|Q1pi(v, x, y)−Q1p
′
i(v, x, y)|

= max
(v,x,y)

n∑
i=1

∣∣∣∣ 1n! ∑
σn∈Sn

[
pσ−1

n (i)(σnv, σnx, y)− p
′
σ−1
n (i)

(σnv, σnx, y)
]∣∣∣∣

≤ max
(v,x,y)

n∑
i=1

1

n!

∑
σn∈Sn

∣∣pσ−1
n (i)(σnv, σnx, y)− p

′
σ−1
n (i)

(σnv, σnx, y)
∣∣

≤
∑

σn∈Sn

1

n!
max
(v,x,y)

n∑
i=1

∣∣pσ−1
n (i)(σnv, σnx, y)− p

′
σ−1
n (i)

(σnv, σnx, y)
∣∣

=
∑

σn∈Sn

1

n!
max
(v,x,y)

n∑
i=1

∣∣pi(σnv, σnx, y)− p′i(σnv, σnx, y)∣∣
=

∑
σn∈Sn

1

n!
max
(v,x,y)

n∑
i=1

∣∣pi(v, x, y)− p′i(v, x, y)∣∣
= max

(v,x,y)

n∑
i=1

∣∣pi(v, x, y)− p′i(v, x, y)∣∣
=l∞,1(p, p

′),

and

l∞,1(Q1u,Q1u
′)

= max
v,v′,x,y

n∑
i=1

|[Q1u]i(vi, (v
′
i, v−i), x, y)− [Q1u

′]i(vi, (v
′
i, v−i), x, y)|

= max
v,v′,x,y

n∑
i=1

∣∣∣∣ 1n! ∑
σn∈Sn

uσ−1
n (i)(vi, σn(v

′
i, v−i), σnx, y)− u′σ−1

n (i)
(vi, σn(v

′
i, v−i), σnx, y)

∣∣∣∣
≤ max

v,v′,x,y

n∑
i=1

1

n!

∑
σn∈Sn

|uσ−1
n (i)(vi, σn(v

′
i, v−i), σnx, y)− u′σ−1

n (i)
(vi, σn(v

′
i, v−i), σnx, y)|

≤ 1

n!

∑
σn∈Sn

max
v,v′,x,y

n∑
i=1

|uσ−1
n (i)(vi, σn(v

′
i, v−i), σnx, y)− u′σ−1

n (i)
(vi, σn(v

′
i, v−i), σnx, y)|

=
1

n!

∑
σn∈Sn

max
v,v′,x,y

n∑
i=1

|ui(vi, (v′i, v−i), x, y)− u′i(vi, (v′i, v−i), x, y)|

= max
v,v′,x,y

n∑
i=1

|ui(vi, (v′i, v−i), x, y)− u′i(vi, (v′i, v−i), x, y)|

=l∞,1(u, u
′).
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Then, when Q· is Q2, we prove the result as below,
l∞,1(Q2p,Q2p

′)

= max
(v,x,y)

n∑
i=1

|Q2pi(v, x, y)−Q2p
′
i(v, x, y)|

= max
(v,x,y)

n∑
i=1

∣∣∣∣ 1

m!

∑
σm∈Sm

[
pi(vσm, x, yσm)− p′i(vσm, x, yσm)

]∣∣∣∣
≤ max

(v,x,y)

n∑
i=1

1

m!

∑
σm∈Sm

∣∣pi(vσm, x, yσm)− p′i(vσm, x, yσm)
∣∣

≤
∑

σm∈Sm

1

m!
max
(v,x,y)

n∑
i=1

∣∣pi(vσm, x, yσm)− p′i(vσm, x, yσm)
∣∣

=
∑

σm∈Sm

1

m!
max
(v,x,y)

n∑
i=1

∣∣pi(v, x, y)− p′i(v, x, y)∣∣
= max

(v,x,y)

n∑
i=1

∣∣pi(v, x, y)− p′i(v, x, y)∣∣
=l∞,1(p, p

′),

and
l∞,1(Q2u,Q2u

′)

= max
v,v′,x,y

n∑
i=1

|[Q2u]i(vi, (v
′
i, v−i), x, y)− [Q2u

′]i(vi, (v
′
i, v−i), x, y)|

= max
v,v′,x,y

n∑
i=1

∣∣∣∣ 1

m!

∑
σm∈Sm

|ui(viσm, (v′i, v−i)σm, x, yσm)− u′i(viσm, (v′i, v−i)σm, x, yσm)

∣∣∣∣
≤ max

v,v′,x,y

n∑
i=1

1

m!

∑
σm∈Sm

|ui(viσm, (v′i, v−i)σm, x, yσm)− u′i(viσm, (v′i, v−i)σm, x, yσm)|

≤ 1

m!

∑
σm∈Sm

max
v,v′,x,y

n∑
i=1

|ui(viσm, (v′i, v−i)σm, x, yσm)− u′i(viσm, (v′i, v−i)σm, x, yσm)|

=
1

m!

∑
σm∈Sm

max
v,v′,x,y

n∑
i=1

|ui(vi, (v′i, v−i), x, y)− u′i(vi, (v′i, v−i), x, y)|

= max
v,v′,x,y

n∑
i=1

|ui(vi, (v′i, v−i), x, y)− u′i(vi, (v′i, v−i), x, y)|

=l∞,1(u, u
′).

Thus, we have completed Step 1.

Step 2: We prove that a smaller distance implies a smaller covering number.

Let X and Y be two metric spaces with two different distances l1 and l2, respectively. There exists
a surjective mapping f from Y to X , such that l1(f(x), f(y)) ≤ l2(x, y) for all x, y ∈ Y . The
covering numbersN1(X , r) andN2(Y, r) are defined as the minimum numbers of balls with radius r
that can cover X and Y under l1 and l2, respectively.

By the definition of the covering number N2(Y, r), there exists a set A of scale N2(Y, r), such that
l2(x,A) = inf

y∈A
l2(x, y) < r,∀x ∈ Y.

Then, f(A) is also a r-cover for X under distance l1, i.e., for any x ∈ Y , we have
l1(f(x), f(A)) = inf

y∈A
l1(f(x), f(y)) ≤ inf

y∈A
l2(x, y) = l2(x,A) < r.
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Because f is surjective, for any x′ ∈ X , there exists an x ∈ Y , such that x′ = f(x). Then, for any
x′ ∈ X , we have that

l1(x
′, f(A)) = l1(f(x), f(A)) < r.

By the definition of N1(X , r), we have
N1(X , r) ≤ |f(A)| ≤ |A| = N2(Y, r).

Eventually, combining the results in Step 1 and in Step 2, we have that
N∞,1(Q·U , r) ≤ N∞,1(U , r),

and
N∞,1(Q·P, r) ≤ N∞,1(P, r),

for both the bidder averaging Q1 and the item averaging Q2.

A.6 Proof of Theorem 3.6 and Corollary 3.7

We first introduce two lemmas. The first lemma gives a concentration inequality via the covering
number. This result can be used to bound the gap between expected revenue/ex-post regret and
empirical revenue/ex-post regret. The second lemma bounds the covering number N∞,1(R, 2r) by
the covering number N∞,1(U , r). Both lemmas has been proved by [10]. We recall them here to
make our paper completed.
Lemma A.1 (cf. Lemma E.1, [10]). Let S = {z1, . . . , zL} be a set of i.i.d. sample points drawn
from a distribution D over Z . Suppose F is a set of functions from Z to R such that f(z) ∈ [a, b] for
all f ∈ F and z ∈ Z . We define l∞ on F as

l∞(f, f ′) = max
z∈Z
|f(z)− f ′(z)|,

and N∞(F , r) as the minimum number of balls with radius r that can cover F under l∞-distance.
Then, we have the following concentration inequality,

P
[
∃f ∈ F :

∣∣∣ 1
L

L∑
i=1

f(zi)− E[f(z)]
∣∣∣ > ϵ

]
≤ 2N∞

(
F , ϵ

3

)
exp

(
− 2Lϵ2

9(b− a)2
)
.

Proof. By the definition of N∞(F , r), for any f ∈ F , there exists an fr ∈ Fr such that Fr is an
r-cover for F and l∞(f, fr) < r. Denote 1

L

∑L
i=1 f(zi) by ES [f(z)]. Then, we have

P
[
∃f ∈ F :

∣∣∣ES [f(z)]− E[f(z)]
∣∣∣ > ϵ

]
=P

[
∃f ∈ F :

∣∣∣ES [f(z)]− ES [fr(z)] + ES [fr(z)]− E[fr(z)] + E[fr(z)]− E[f(z)]
∣∣∣ > ϵ

]
≤P

[
∃f ∈ F :

∣∣∣ES [f(z)]− ES [fr(z)]
∣∣∣+ ∣∣∣ES [fr(z)]− E[fr(z)]

∣∣∣+ ∣∣∣E[fr(z)]− E[f(z)]
∣∣∣ > ϵ

]
≤P

[
∃fr ∈ F ϵ

3
:
∣∣∣ES [fr(z)]− E[fr(z)]

∣∣∣ > ϵ

3

]
≤N∞

(
F , ϵ

3

)
P
[∣∣∣ES [f(z)]− E[f(z)]

∣∣∣ > ϵ

3

]
≤2N∞

(
F , ϵ

3

)
exp

(
− 2Lϵ2

9(b− a)2
)
.

The third inequality follows from the fact that when r = ϵ
3 , we have

|f(z)− fr(z)| <
ϵ

3
,

for all z ∈ Z and f ∈ F . Then, from the Hoeffding’s inequality, we have∣∣∣ 1
L

L∑
i=1

f(zi)−
1

L

L∑
i=1

fr(zi)
∣∣∣ < ϵ

3
and

∣∣∣E[f(z)]− E[fr(z)]
∣∣∣ < ϵ

3
.

The proof is completed.
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The following lemma bounds the covering numberN∞,1(R, 2r) by the covering numberN∞,1(U , r).
Then the gap between expected ex-post regret and empirical ex-post regret can be bounded by the
covering number N∞,1(U , r).
Lemma A.2 (cf. Lemma E.3, [10]). We defineN∞,1(R, r) andN∞,1(U , r) as the minimum numbers
of balls with radius r that can cover spaces R and U under distance l∞,1, respectively. Then, we
have that

N∞,1(R, 2r) ≤ N∞,1(U , r)

Proof. By the definition ofN∞,1(U , r), there exists an r-cover Ur for U , such that |Ur| = N∞,1(U , r)
and for any u ∈ U ,

l∞,1(u,Ur) = inf
u′∈Ur

l∞,1(u, u
′) < r.

We defineRr as

{reg ∈ R : regi(v, x, y) = max
v′
i

ui(vi, (v
′
i, v−i), x, y)− ui(vi, v, x, y) for some ui ∈ Ur}.

Then, we can prove thatRr is a 2r-cover for the spaceR, i.e.,

l∞,1(reg,Rr)

= inf
reg′∈Rr

l∞,1(reg, reg
′)

= inf
reg′∈Rr

max
v,x,y

n∑
i=1

|regi(v, x, y)− reg′i(v, x, y)|

= inf
u′∈Ur

max
v,x,y

n∑
i=1

∣∣∣[max
v′
i

ui(vi, (v
′
i, v−i), x, y)− ui(vi, v, x, y)]

− [max
v′
i

u′i(vi, (v
′
i, v−i), x, y)− u′i(vi, v, x, y)]

∣∣∣
≤ inf

u′∈Ur

max
v,x,y

[ n∑
i=1

∣∣∣max
v′
i

ui(vi, (v
′
i, v−i), x, y)−max

v′
i

u′i(vi, (v
′
i, v−i), x, y)

∣∣∣
+
∣∣∣ui(vi, v, x, y)− u′i(vi, v, x, y)∣∣∣]

≤max
v,x,y

[ n∑
i=1

∣∣∣max
v′
i

ui(vi, (v
′
i, v−i), x, y)−max

v′
i

u∗i (vi, (v
′
i, v−i), x, y)

∣∣∣
+
∣∣∣ui(vi, v, x, y)− u∗i (vi, v, x, y)∣∣∣] (where l∞,1(u, u

∗) < r)

≤max
v,x,y

n∑
i=1

∣∣∣max
v′
i

ui(vi, (v
′
i, v−i), x, y)−max

v′
i

u∗i (vi, (v
′
i, v−i), x, y)

∣∣∣+ r

≤max
v,x,y

n∑
i=1

max
v′
i

|ui(vi, (v′i, v−i), x, y)− u∗i (vi, (v′i, v−i), x, y)|+ r

= max
v,v′

i,x,y

n∑
i=1

|ui(vi, (v′i, v−i), x, y)− u∗i (vi, (v′i, v−i), x, y)|+ r < 2r.

Eventually, we have
N∞,1(R, 2r) ≤ |Rr| ≤ |Ur| = N∞,1(U , r).

The proof is completed.

We now prove Theorem 3.6 and Corollary 3.7.

23



Proof of Theorem 3.6 and Corollary 3.7. Applying Lemma A.1 to the spaces P and U , we have that

P
[
∃ω ∈ Ω :

∣∣∣∣ E
(v,x,y)

[ n∑
i=1

pωi (v, x, y)

]
− 1

L

L∑
l=1

n∑
i=1

pωi (v
(l), x(l), y(l))

∣∣∣∣ > ϵ

]
≤2N∞,1

(
P, ϵ

3

)
exp

(
− 2Lϵ2

9n2

)
,

and

P
[
∃ω ∈ Ω :

∣∣∣∣ E
(v,x,y)

[ n∑
i=1

regωi (v, x, y)

]
− 1

L

L∑
l=1

n∑
i=1

regωi (v
(l), x(l), y(l))

∣∣∣∣ > ϵ

]
≤2N∞,1

(
R, ϵ

3

)
exp

(
− 2Lϵ2

9n2

)
≤2N∞,1

(
U , ϵ

6

)
exp

(
− 2Lϵ2

9n2

)
,

where the last inequality follows from Lemma A.2.

Further, we assume that

ϵ ≥

√
9n2

2L

(
log

4

δ
+max

{
logN∞,1

(
P, ϵ

3

)
, logN∞,1

(
U , ϵ

6

)})
.

Then, we have the following inequalities,

P
[
∃ω ∈ Ω :

∣∣∣∣ E
(v,x,y)

[ n∑
i=1

pωi (v, x, y)

]
− 1

L

L∑
l=1

n∑
i=1

pωi (v
(l), x(l), y(l))

∣∣∣∣ > ϵ

]
≤ δ

2
,

and

P
[
∃ω ∈ Ω :

∣∣∣∣ E
(v,x,y)

[ n∑
i=1

regωi (v, x, y)

]
− 1

L

L∑
l=1

n∑
i=1

regωi (v
(l), x(l), y(l))

∣∣∣∣ > ϵ

]
≤ δ

2
.

Thus, with probability at least 1− δ, for any ω ∈ Ω, we have that∣∣∣∣ E
(v,x,y)

[ n∑
i=1

pωi (v, x, y)

]
− 1

L

L∑
l=1

n∑
i=1

pωi (v
(l), x(l), y(l))

∣∣∣∣ < ϵ, (5)

and ∣∣∣∣ E
(v,x,y)

[ n∑
i=1

regωi (v, x, y)

]
− 1

L

L∑
l=1

n∑
i=1

regωi (v
(l), x(l), y(l))

∣∣∣∣ < ϵ. (6)

Equivalently, when the number of samples L is large enough, i.e.,

L ≥ 9n2

2ϵ2

(
log

4

δ
+max

{
logN∞,1

(
P, ϵ

3

)
, logN∞,1

(
U , ϵ

6

)})
,

then, the eqs. (5) and (6) both hold with probability at least 1− δ.

The proof is completed.

A.7 Proof of the Generalization Bound for Myerson Auctions

Denote rev(v, x, y) as
∑n

i=1 pi(v, x, y), then we have the following theorem,
Theorem A.3. Assume the item valuation for each bidder is not larger than 1. When the sample
complexity satisfies L ≥ 1

2ϵ2 log
2
δ , with probability at least 1− δ, we have∣∣∣∣ 1L

L∑
ℓ=1

rev(v(ℓ), x(ℓ), y(ℓ))− E(v,x,y)

[
rev(v, x, y)

]∣∣∣∣ ≤ ϵ.
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Proof. Since vi ≤ 1, we have

rev(v, x, y) =

n∑
i=1

pi(v, x, y) ≤
n∑

i=1

bi(v, x, y)vi ≤
n∑

i=1

bi(v, x, y) ≤ 1.

According to the Hoeffding’s inequality, we have

P
[∣∣∣∣ 1L

L∑
ℓ=1

rev(v(ℓ), x(ℓ), y(ℓ))− E(v,x,y)

[
rev(v, x, y)

]∣∣∣∣ ≥ ϵ] ≤ 2 exp(−2Lϵ2).

Let 2 exp(−2Lϵ2) ≤ δ, then we obtain what we need. The proof is completed.

A.8 Orbit Averaging over Subsets of Bidders/Items

In addition, we can extended our theory to orbit averaging over the subset of the bidders/items.
Theorem A.4. Let Q be the orbit averaging over any subset of bidders and items, and (g, p) be any
mechanism. Then we have

E(v,x,y)

[ n∑
i=1

[Qp]i(v, x, y)
]
= E(v,x,y)

[ n∑
i=1

pi(v, x, y)

]
,

and

E(v,x,y)

[ n∑
i=1

regi(v, x, y)

]
≥ E(v,x,y)

[ n∑
i=1

[Qreg]i(v, x, y)
]
,

where regi is the ex-post regret of bidder i.

Proof. Without loss of generality, we assume that Q1 takes average over the first ñ bidders, Q2 takes
average over the first m̃ items and Q3 takes average over the first ñ bidders and m̃ items. Denote Z1

as (vij , xi : i > ñ, j ∈ [m]) and Z2 as (vij , yj : i ∈ [n], j > m̃). Following Theorem 3.1, we have

E
[ n∑

i=1

[Q1p]i(v, x, y)

∣∣∣∣Z1

]
= E

[ n∑
i=1

pi(v, x, y)

∣∣∣∣Z1

]
,

and

E
[ n∑

i=1

regi(v, x, y)

∣∣∣∣Z1

]
≥ E

[ n∑
i=1

[Q1reg]i(v, x, y)

∣∣∣∣Z1

]
.

Then, combining the fact that E[E[X|Y ]] = E[X], we have

E
[ n∑

i=1

[Q1p]i(v, x, y)

]
= E

[ n∑
i=1

pi(v, x, y)

]
,

and

E
[ n∑

i=1

regi(v, x, y)

]
≥ E

[ n∑
i=1

[Q1reg]i(v, x, y)

]
.

Similarly, replace Z1 by Z2, we can obtain the equations all hold for Q2.

Finally, we prove that Q3 = Q1Q2 = Q2Q1. The proof is same with the proof of Lemma 3.3. Only
replace n and m by ñ and m̃ respectively, and we obtain the result.

The proof is completed.

Theorem A.5. Let Q be the orbit averaging over any subset of bidders and items, and U = {uω :
ω ∈ Ω} and P = {pω : ω ∈ Ω} the sets of all possible utilities and payment rules. Then we have

N∞,1(QU , r) ≤ N∞,1(U , r) and N∞,1(QP, r) ≤ N∞,1(P, r),

where N∞,1(U , r) and N∞,1(P, r) are the minimum numbers of balls with radius r that can cover
U and P under l∞,1-distance, respectively.
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Proof. Without loss of generality, we assume that Q1 takes average over the first ñ bidders, Q2 takes
average over the first m̃ items and Q3 takes average over the first ñ bidders and m̃ items.

We can prove the distance between two mechanisms becomes smaller after orbit averaging, i.e.,

l∞,1(Qp,Qp′) ≤ l∞,1(p, p
′) and l∞,1(Qu,Qu′) ≤ l∞,1(u, u

′).

Only replace n and m by ñ and m̃ in the proof of Theorem 3.5, and we obtain the results.

The proof is completed.

A.9 Average over Subgroups

It is worth noting that our proof only replies one assumption that the valuation joint distribution
is invariant under the bidder/item permutation. Consequently, we may adopt orbit averaging over
any subgroup of Sn × Sm, while the benefits on revenue and ex-post regret still hold. Hence, there
is a trade-off between the auction mechanism performance (revenue and ex-post regret) and the
computational complexity: better performance requires more computation. In addition, the choice of
the subgroup can also depend on the input feature x [28], which could be more flexible.

B Additional Experimental Details

This section presents additional experimental details and results omitted from the main text due to
space limitation.

B.1 Additional Experimental Settings

In this section, we present detailed experimental settings.

B.1.1 Network Architectures

We first describe the RegretNet’s architecture [12]. A RegretNet consists of two parts: the allocation
network gω : Rnm → [0, 1]nm and the payment network pω : Rnm → Rn

≥0, both of which are
modeled as three-layer fully-connected networks with tanh activations. Every layer in the two
networks includes 100 nodes.

For each item j, the payment network outputs a probability vector (gω1j(b), . . . , g
ω
nj(b))

T , where
gωij(b) is the probability of allocating the item j to the bidder i. To avoid allocating one item over
once, a feasible allocation network needs to satisfy

∑n
i=1 g

ω
ij(b) ≤ 1 for all j ∈ [m], ω ∈ Ω, and

b ∈ Vnm. Therefore, we compute the allocation via a softmax activation function. In addition, to
present the probability that the item is reserved, an extra dummy node is included in the softmax
computation.

To ensure the individual rational condition, the payment network pω is required to output a payment
vector pω(b), such that pωi (b) ≤

∑m
j=1 g

ω
ij(b)bij for all i ∈ [n]. Therefore, the payment network first

computes a fractional payment pωi (b) ∈ [0, 1] for each bidder i using a sigmoidal unit. Then, the final
payment of the bidder i is

pωi (b) = pωi (b)

m∑
j=1

gωij(b)bij ≤
m∑
j=1

gωij(b)bij .

An overview of the RegretNet’s architecture is illustrated in the following Figure 1.

RegretNet-PE is designed by modifying RegretNet. We adopt the allocation rule as g̃ω = Q3g
ω

and the payment rule as p̃ω = Q3p
ω , respectively. In this way, we may guarantee that in RegretNet-

PE, the allocation is feasible and the mechanism is individual rational, i.e.,
∑n

i=1 g̃
ω
ij(b) ≤ 1, and

p̃ωi (b) ≤
∑m

j=1 g̃
ω
ij(b)bij . We may also show that the RegretNet-PE is always permutation-equivariant

and has the same number of coefficients as the RegretNet. The proof can be found in Appendix A.1.
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Figure 1: The allocation network gω and the payment network pω of the RegretNet with the overall
mechanism parameter ω = (ωg, ωp).

B.1.2 Training Procedures

We adopt the augmented Lagrangian method to minimize the following object function with a
quadratic penalty term for violating the constraints,

Lρ(ω, λ) = −
1

L

L∑
l=1

n∑
i=1

pωi (v
(l)) +

n∑
i=1

λir̂egi(ω) +
ρ

2

( n∑
i=1

r̂egi

)2

,

where L is the number of samples, λ is a vector of Lagrange multipliers, and ρ > 0 is a parameter to
control the weight of the quadratic penalty. We alternately update the overall mechanism parameter
ω and the Lagrange multiplier λ as follows:

(a) ωnew ∈ argminω Lρ(ω
old, λold) (every iteration);

(b) λnewi = λoldi + ρ · r̂egi(ωnew), ∀i ∈ [n] (every Tλ iterations).

The training procedure is described in the following Algorithm 1.

We divide all training samples S into T batches S1, . . . ,ST of size B. At iteration t, we use the batch
St = {v(1), . . . , v(B)}.
The update (a) is computed via Adam. The gradient of Lρ w.r.t. ω for a fixed λt is as below,

∇ωLρ(ω, λ
t) = − 1

B

B∑
l=1

n∑
i=1

∇ωp
ω
i (v

(l)) +

B∑
l=1

n∑
i=1

λtig
t
l,i + ρ

B∑
l=1

n∑
i=1

r̂egi(ω)g
t
l,i,

where

r̂egi(ω) =
1

B

B∑
l=1

max
v′
i∈Vm

uωi (v
(l)
i , (v′i, v

(l)
−i))− u

ω
i (v

(l)
i , v(l)),

and

gtl,i = ∇ω

[
max
v′
i∈Vm

uωi (v
(l)
i , (v′i, v

(l)
−i))− u

ω
i (v

(l)
i , v(l))

]∣∣∣
ω=ωt

.

Because r̂egi(ω) and gtl,i both contain a “max” over misreports2, we use another Adam to compute

the approximated best biddings v′(l). In each update on ωt, we perform R updates to compute a
best bidding v′(l)i for each i ∈ [n]. In particular, we maintain the misreports v′(l) for each sample l
as the initial value in the next iteration. Then, we use these biddings v′(l) to compute the gradient
∇ωLρ(ω, λ

t) and then, update ωt as ωt+1 = ωt − η∇ωLρ(ω
t, λt). After every Tλ iterations, we

update λt as λt+1
i = λti + ρr̂egi(ω

t+1). In addition, we increase the value of ρ every a certain
number of iterations, where we set the value of ρt in each iteration t prior to training.

2The misreport refers to an arbitrary bid, rather than restricted to be a truthful bid [12].
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Algorithm 1: RegretNet and RegretNet-PE Training
Input: Batches S1, . . . ,ST of size B
Parameters: ∀t ∈ [T ], ρt > 0, γ > 0, η > 0, T ∈ N, R ∈ N, Tλ ∈ N
Initialize: ω0 ∈ Rd, λ0 ∈ Rn

for t = 0 to T do
Receive batch St = {v(1), . . . , v(B)}
Initialize misreports v′

(l)
i ∈ Vm, ∀l ∈ [B], i ∈ [n]

for r = 0 to R do
∀l ∈ [B], i ∈ [n]:
v′

(l)
i ← v′

(l)
i + γ∇v′

i
uωi

(
v
(l)
i , (v′

(l)
i , v

(l)
−i)

)
end
Compute ex-post regret gradient : ∀l ∈ [B], i ∈ [n]:
gtl,i ← ∇ω

[
uωi

(
v
(l)
i , (v′

(l)
i , v

(l)
−i)

)
− uωi

(
v
(l)
i , v(l)

)]∣∣∣
ω=ωt

Compute Lagrangian gradient using Equation 4 and update ωt:
ωt+1 ← ωt − η∇ωLρt

(ωt, λt)
Update Lagrange multipliers λ once in Tλ iterations:
if t is a multiple of Tλ then

λt+1
i = λti + ρtr̂egi(ω

t+1), ∀i ∈ [n]
else

λt+1 = λt

end
end

Table 3: Additional experimental results. "n ×m Normal" refers that there are n bidders and m
items, and the valuation is drawn from the truncated normal distribution N (0.3, 0.1) in [0,1]. The
true values of the ex-post regret and the generalization error (GE) are the products of the values in the
table and a factor of 10−5.

Method
2× 1 Normal 3× 1 Normal .

Revenue Regret GE Revenue Regret GE

Optimal 0.304 0 - 0.391 0 -

RegretNet 0.275 97.0 8.50 0.321 84.0 45.5

RegretNet-Test 0.275 95.2 - 0.321 75.0 -
RegretNet-PE 0.276 85.4 8.40 0.382 69.7 27.6

Method
2× 2 Normal 5× 3 Normal

Revenue Regret GE Revenue Regret GE

RegretNet 0.577 343 246 1.05 114 77.0

RegretNet-Test 0.577 327 - 1.05 32.0 -
RegretNet-PE 0.577 318 77.0 1.09 75.0 70.0

B.1.3 Test Settings

To verify our Theorem 3.1 and Theorem 3.4, we first train a RegretNet and then project the will-trained
RegretNet to be permutation-equivariant through bidder-item aggregated averaging Q3, denoted as
“RegretNet-Test”. To meet the symmetric valuation condition in Theorem 3.1 and Theorem 3.4, we
sample a set of valuations from the distribution, which is denoted by S, and then, induce a set of
symmetric samples S̃ = {σnvσm : σn ∈ Sn, v ∈ S, σm ∈ Sm} for test.
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Table 4: Additional experimental result, where "n×m Compound" refers that there are n bidders
and m items, and the valuations are i.i.d. sampled from the compound distributions.

Method
3× 1 Compound 5× 1 Compound

Revenue Regret Revenue Regret

RegretNet 0.516 < 0.001 0.329 < 0.001

EquivariantNet 0.498 < 0.001 0.311 < 0.001

RegretNet-PE 0.539 < 0.001 0.356 < 0.001

Table 5: Additional experimental result, where "n×m Uniform" refers that there are n bidders and
m items, and the valuations are i.i.d. sampled from the uniform distribution U [0, 1].

Method
2× 5 Uniform 5× 3 Uniform

Revenue Regret GE Revenue Regret GE

RegretNet 2.24 104 86.4 1.56 28.4 19.4

RegretNet-Test 2.24 74.0 - 1.56 8.60 -
RegretNet-PE 2.38 89.9 24.9 1.85 20.1 11.8

For a RegretNet-PE, there is no difference between test on S̃ and on S, because

1

n!m!L

L∑
l=1

∑
σn∈Sn

∑
σm∈Sm

f(σnviσm) =
1

n!m!L

L∑
l=1

∑
σn∈Sn

∑
σm∈Sm

f(vi) =
1

L

L∑
l=1

f(vi),

for any permutation-equivariant function f and a RegretNet-PE is always permutation-equivariant.

To compute the best bidding v′i for each bidder i, we first randomly initialize 1, 000 misreports in
all settings, and then, perform 2, 000 updates on each misreport via Adam with the same settings.
Finally, we choose the best one (which induces a maximal utility of the bidder i) as the approximated
best bidding v′i.

B.1.4 Implementation Details

We train the models (RegretNet and RegretNet-PE) for up to 150 epochs with a batch size of 128
(B = 128) and report the early-stop results for RegretNet-PE to obtain a comparable ex-post regret.
The terminal iteration numbers for RegretNet-PE are 10, 000 in the 2× 1 setting, 17, 000 in the 3× 1
setting, 18, 000 in the 5× 1 setting, 300, 000 in the 1× 2 setting, and 600, 000 in the 2× 2 setting.
Our insight is that the larger terminal iteration number required in the 2× 2 setting is because of the
small model size, i.e., where the networks have three layers (each of 100 nodes). The value of ρ
is initialized as 1.0 and increased by 5 every 200 batches. For each update on ωt, we initialize one
misreport and update the misreport by Adam for each bidder with 25 steps (R = 25) and learning rate
0.1 (γ = 0.1). The final optimal misreports will be used to initialize the misreports for the same batch
in the next epoch. We update ωt via Adam for every batch with a learning rate of 0.001. Besides, we
update λt every 200 batches.

B.2 Additional Experiment Results

We present additional experimental results. Each valuation vij is sampled independently from (1) a
truncated normal distributionN (0.3, 0.1) in [0, 1]; (2) a compound distribution N (xi

6 , 0.1) truncated
in [0, 1], where xi is sampled independently and uniformly from {1, 2, 3, 4, 5} (cf. Setting A, [10]);
and (3) a compound distribution U [0, Sigmoid(xTi yj)], where xi and yj are sampled independently
and uniformly from [−1, 1] (Setting C, [10]). All results are shown in Table 3 and Table 4. The
revenue and ex-post regret of RegretNet and EquivariantNet in Table 4 come from the previous work
[10]. In Table 4, we report the ex-post regret as “< 0.001” following the previous works.

Moreover, we extend our experiments to more complex settings, including two-bidder five-item and
five-bidder three-item settings. Due to the computation limitations, we sample {3840, 1280} data
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Figure 2: Allocation rule learned by RegretNet (up) and RegretNet-PE (down) for two-bidder and
one-item setting. The solid regions describe the probability to allocating the item to bidder 1 (left)
and bidder 2 (right). The optimal auction mechanism is described by the regions separated by the
dashed black lines, where the number 0 or 1 is the probability of optimal allocation rule in the region.

points and initialize {150, 120} misreports for test. Each valuation is sampled from the uniform
distribution U [0, 1] and the truncated normal distribution N (0.3, 0.1) in [0, 1]. The results are shown
in Tables 3 and 5.

B.3 Allocation Rules Learned by RegretNet and RegretNet-PE

In this section, we show the allocation rules learned by RegretNet and RegretNet-PE in two-bidder,
one-item setting and one-bidder, two-item setting, where the valuation is drawn from the uniform
distribution U [0, 1]. The optimal auction mechanisms are both known.

B.3.1 Two-bidder and One-item Setting

For the two-bidder, one-item setting, the optimal mechanism is well-known as Myerson auction [23],
which allocates the item to the highest bidder with receiving a payment of the maximum of the second
price and the reserve price, if the highest bid is higher than the reserve price. The allocation rules
learned by RegretNet and RegretNet-PE are shown in Figure 2. From Figure 2. We can find that the
two learned allocation rules are both almost the same as the optimal mechanism.
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Figure 3: Allocation rule learned by RegretNet (up) and RegretNet-PE (down) for one-bidder and
two-item setting. The solid regions describe the probability of allocating the first item (left) and the
second item (right). The optimal auction mechanism is described by the regions separated by the
dashed black lines, where the number 0 or 1 is the probability of optimal allocation rule in the region.

B.3.2 One-bidder and Two-item Setting

The optimal mechanism is given by [20]. Same with the above, we show the allocation rules learned
by RegretNet and that learned by RegretNet-PE in Figure 3. The improvement is significant. when one
item’s valuation is close to 0 and another item’s is close to 1, the mechanism learned by RegretNet has
a positive probability to allocate the item with the lower valuation to the bidder, while RegretNet-PE
and the optimal mechanisms would not.
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