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Abstract

Object-guided text-to-image synthesis aims to generate im-
ages from natural language descriptions built by two-step
frameworks, i.e., the model generates the layout and then
synthesizes images from the layout and captions. However,
such frameworks have two issues: 1) complex structure,
since generating language-related layout is not a trivial
task; 2) error propagation, because the inappropriate
layout will mislead the image synthesis and is hard to be
revised. In this paper, we propose an object-guided joint-
decoding module to simultaneously generate the image
and the corresponding layout. Specially, we present the
joint-decoding transformer to model the joint probability
on images tokens and the corresponding layouts tokens,
where layout tokens provide additional observed data
to model the complex scene better. Then, we describe a
novel Layout-VQGAN for layout encoding and decoding to
provide more information about the complex scene. After
that, we present the detail-enhanced module to enrich the
language-related details based on two facts: 1) visual
details could be omitted in the compression of VQGANs;
2) the joint-decoding transformer would not have sufficient
generating capacity. The experiments show that our
approach is competitive with previous object-centered
models and can generate diverse and high-quality objects
under the given layouts.

1. Introduction
Text-to-image synthesis is an important task in computer

vision [10, 16, 25, 27, 30, 37], which generates images from
textual descriptions. Recently, GAN-based methods have
achieved many promising results [36, 39, 42]. However,
GANs, which include both generators and discriminators,
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Figure 1. The proposed model includes an object-guided joint-
decoding transformer and a detail-enhanced module: 1) the joint-
decoding transformer simultaneously handles the object-centered
layout tokens and image tokens, 2) the detail-enhanced module
enriches the language-related finer-grained details to obtain a more
realistic image.

are known to have difficulty in reaching the stable conver-
gence to simulate complex distributions over images condi-
tioned on the text. For complex scenes with multi objects,
the synthesizing results by GAN-based models are far from
satisfactory. Because a complex scene may include various
objects with different viewpoints and sizes, which is usually
not mentioned in captions.

The layout, consistinig of bounding boxes and object la-
bels, can provide semantic information of the scene. The
layout information is beneficial to model the correspond-
ing image. The previous models [8, 9, 14] are usually built
by two-step structures: firstly, the model generates the lay-
out and then synthesizes images from the layout and cap-
tions. Such structures are complex and would suffer from
the problem of error propagation. Nonetheless, the auto-
regressive models could jointly handle the layout and im-
age, denoted as one-step, and layouts can provide additional
semantic information to model the complex scene. For ex-
ample, as shown in the left part of Figure 1, given “A color-
ful kite flying through a cloudy blue sky”, the model would



auto-regressively predicts the image tokens and the layout
tokens simultaneously under both the previously predicted
image tokens and the predicted layout tokens. Then, the
image tokens and the layout tokens can be decoded into the
image and the layout, respectively.

Recent auto-regressive generative models, like Genera-
tive Pre-Training (GPT) models [2, 23], exploit Transform-
ers [34] to promote the performance of natural language
generation. To reduce the computation of modeling the
probability density function on an image, recent methods
exploit the framework of Vector Quantized Variational Au-
toEncoders (VQ-VAE) [32] to transform and compress the
density image into a low-dimensional discrete latent space,
which is affordable to be modeled by the Transformers.
CogView [6] and DALL-E [24] are jointly trained on large-
scale text and image (from VQ-VAE or VQ-GAN) tokens
and achieve promising results.

However, on one side, their models did not consider the
layout information and may not properly decompose and
understand the complex scene, which may lead to some un-
realistic distortion. Besides, without layout, the model is
hard to control the synthesis to meet some user-preferring.
On another side, since the tokens of the image are generated
by the compressor: VQ-VAE or VQ-GAN, some visual de-
tails would be lost, and the lost details will degrade the de-
coded images. Besides, the transformer is hard to model
the massive finer-grained visual details with the finite com-
puting resources and text-image dataset. For example, as
shown in the right part of Figure 1, in the image gener-
ated by object-guided joint-decoding transformer, the kite
is gray, and the sky is light pink, which needs to be ma-
nipulated to include the language-related visual features of
“colorful skite” and “cloudy blue sky”.

To alleviate the above issues, we propose an object-
guided joint-decoding module to simultaneously generate
the image and the corresponding layout. Specifically, to
handle the layout tokens and image tokens jointly, we pro-
pose an auto-regressive joint-decoding transformer, where
each image token will be better predicted from the more
abundant conditions involving the historical image tokens
and layout tokens. Moreover, to obtain high-quality lay-
out tokens for the joint-decoding transformer, we introduce
a novel Layout-VQGAN to handle the layout information
with class data, in which the layout is compressed into lay-
out tokens. In addition, we propose a detail-enhanced GAN
based on affine combination modules (ACM) [12] to im-
prove language-related visual details, which may reduce the
requirement of the transformer through synthesizing the raw
images without many finer-grained details. Furthermore,
since language-based image editing is not a trivial task, an
edited image may be worse than the original image. Thus,
we introduce a global ranking to select the best image from
images and the corresponding enhanced images, which are

generated by the joint-decoding transformer and handled by
the detail-enhanced GAN, respectively. The main contribu-
tions of this paper are three-fold:

• To improve the synthesizing quality of complex
scenes, we propose an one-step object-guided joint-
decoding transformer to simultaneously decode the
image tokens and decode layout tokens, where the
object-centered layout can be altered to control the
scene.

• To remedy the omitted visual details induced by the
compression in VQGAN and the limited capacity of
the joint model, we introduce a detail-enhanced mod-
ule based on the ACM to enrich the finer-grained
language-related visual details.

• We conduct extensive experiments on MS-COCO
dataset to verify the object-centered generating ability
of the auto-regressive joint-decoding transformer and
the effectiveness of the detail enhancement.

2. Related Work
Text-to-image generation: Stacked GANs et al. [25,39,40]
are proposed to decompose the complex task into relatively
simple tasks and gradually synthesize images. Xu et al. [36]
and Zhu et al.. [42] exploit attentional models to synthesize
different parts by focusing on different words to improve
the quality of generated images. Chen et al. [5] introduce
a RiFeGAN to enrich the given caption and improve the
semantic meanings of text descriptions. Wu et al. [35] ex-
ploited the attribute pairs to synthesize images and improve
the controllability. Qiao et al. [22] introduce a MirrorGAN
with a captioner to re-describe the synthesized image and
improve the semantic consistency. Tan et al. [31] proposed
a knowledge-transfer GAN (KT-GAN) to bridge the cross-
domain gap and improve the quality of synthesized images.
Yuan and Peng [38] propose Bridge-GAN to construct a
transitional space for associating text and image.
Object-Centered Text-to-image generation: Hinz et al. [8,
9] introduced a new framework that exploits an object-level
synthesizing generator to utilize bounding boxes and model
the complex scenes with multiple objects. Li et al. [14] ex-
ploited two-step object-driven attentive GANs to fuse the
information of bounding boxes and object shapes to im-
prove the synthesizing quality. Sylvain et al. [29] proposed
an object-centric generator to utilize object layouts, where
the information of objects is enhanced by a scene-graph
similarity module. By exploiting the layouts of objects to
guide the synthesis, many works [13, 15, 21, 28] generate
high-quality images by implicitly decomposing the com-
plex scene.
Text-Guided Image Manipulation: Nam et al. [19] pro-
pose a TAGAN to manipulate the image by exploiting the
text-adaptive discriminator. Chen et al. [3] fuse visual fea-



tures of a source image and the language features by propos-
ing a generic recurrent attentive modeling framework. Li et
al. [11] propose a ControlGAN to effectively generate im-
ages, which consists of a spatial and channel-wise atten-
tional generator and a word-level discriminator. Zhou et
al. [41] introduce the text-based pose generation and visual
appearance transferring to edit the person images. Liu et
al. [18] introduce an IR-GAN consisted of the word-level
and instruction-level instruction encoders and a reasoning
discriminator to improve the consistency between the im-
age and linguistic instruction. Li et al. [12] propose the
text-image affine combination module and the detail cor-
rection module to manipulate the images based on a given
description.
Transformer-based Image Synthesis: Chen et al. [4] intro-
duce the ImageGPT, a pixel-level auto-regressive model, to
synthesize images at a max resolution of 96 × 96. To gen-
erate images at a high-resolution, Vector Quantized Vari-
ational AutoEncoders (VQ-VAE) [32] is exploited to com-
press the dense image into a low-dimensional discrete latent
vector that can be recovered by a decoder. Given the dis-
crete latent vector, PixelCNN [33] can be used to model the
prior and generate the latent vector. Following this frame-
work, recent work [6,7,24] used Transformer to fit the prior
and greatly improve the performance of image synthesis.
Difference to Existing Works: OPGAN [8] utilize an ob-
ject pathway in GANs to provide the object-center infor-
mation like the bounding boxes and the corresponding la-
bels. Their work needs a bounding box generator to gener-
ate the bounding boxes from a given caption as in [14] first.
CogView [6] and DALL-E [24] are trained on a large-scale
dataset and based on a much larger Transformer, and they
can integrate into our works naturally to improve the syn-
thesizing quality. In contrast, our work integrates the lay-
out into the transformer and builds a one-step object-guided
joint transformer to improve the synthesizing quality with-
out the requirement of the additional bounding box genera-
tor. Then, we utilize a detail-enhanced GAN to recover the
omitted visual details because of the compression in VQ-
GAN and the limited capacity of the joint model.

3. Methodology
In this section, we propose an object-guided joint-

decoding module to simultaneously generate the image and
the corresponding layout. In Sec 3.1, we present the joint-
decoding transformer to synthesize images tokens and the
corresponding layouts tokens at one-step. Then, we de-
scribe a novel Layout-VQGAN for layout encoding and de-
coding for providing more information about the complex
scene in Sec 3.2. After that, in Sec 3.3, we present the
detail-enhanced module to enrich the language-related de-
tails based on two facts: 1) visual details could be omitted
in the compression of VQGANs [7]; 2) the joint-decoding

transformer would not have sufficient generating capacity.

3.1. Joint-Decoding Transformer

We introduce the joint-decoding transformer involving
both image tokens and layout tokens. Firstly, we present the
evidence lower bound of the joint-decoding transformer to
derive the Negative Log-Likelihood (NLL) loss for image
tokens and layout tokens. Secondly, we proposed a joint
autoregressive decoding for both image tokens and layout
tokens.

3.1.1 Evidence Lower Bound

The process of the joint-encoding transformer is the max-
imizing problem of the Evidence Lower BOund (ELBO)
over images, corresponding layouts, and corresponding
captions. Given an image x in the dataset, the correspond-
ing layout m, and the corresponding caption t, The ELBO
of the joint distribution pθ,ϕx,ϕm

(x,m, t) is

log pθ,ϕx,ϕm(x,m, t)

= log pθ(t) + log pθ,ϕx,ϕm(x,m|t)

≥−
(

− log pθ(t)︸ ︷︷ ︸
NLL loss for text

+Ezx∼qγx (z
x|x)[− log pϕx

(x|zx)]︸ ︷︷ ︸
image reconstruction loss

+ Ezm∼qγm (zm|m)[− log pϕm(m|zm)]︸ ︷︷ ︸
layout reconstruction loss

+ KL(qγx,γm
(zx, zm|x,m)||pθ(zx, zm|t))︸ ︷︷ ︸

KL between q and text conditional prior

)
(1)

where θ is the parameter of the prior pθ(t); γm and ϕm are
an encoder and a decoder of the VQGAN for the layout m;
γx and ϕx are an encoder and a decoder of the VQGAN for
the image x; zx and zm are the latent variables regarding the
image and layout; KL is the Kullback–Leibler divergence.
NLL denotes the Negative Log-Likelihood.

Recent methods usually utilize the powerful transform-
ers to deal with the discrete tokens zx and zm, which
can be set as zm = argmaxzm qγm

(zm|m) and zx =
argmaxzx qγx

(zx|x) [6]. The Eq. (1) can be rewritten as
NLL loss for tokens,

KL(qγx,γm
(zx,zm|x,m)||pθ(zx,zm|t))=−log pθ(z

x, zm|t).

Thus, we can exploit a transformer to model the NLL losses
by using the tokens t, zx, and zm, then utilize two VQGANs
for the image and the layout to generate images and layouts.
We utilize the Image VQGAN built by Esser et al. [7] for
image encoding and decoding, and propose a novel VQ-
GAN for layout encoding and decoding in Sec 3.2.



a)  Decoding image and layout tokens simultaneously.                     b) Decoding image tokens under the given layout.                          c) Detail enhancementa)  Decoding image and layout tokens simultaneously.                     b) Decoding image tokens under the given layout.                          c) Detail enhancement

Figure 2. The synthesizing framework: a) the joint-decoding transformer decodes image tokens and layout tokens simultaneously; b) the
joint-decoding transformer decodes image tokens according to the given layout tokens; c) the detail enhanced module consists of a detail
enhanced GAN to edit the input image and a global ranker to select the best candidate.

3.1.2 Joint Autoregressive Decoding in One-Step

Previous two-step methods like [8], which need first gen-
erate a layout and then generate the image from the layout,
could trigger error propagation when the generated layout
did not fit the given caption. What’s more, the layout could
not be changed once generated.

However, in the decoding process of the joint-decoding
transformer, our model simultaneously generates jth image
tokens zxj ∈ zx and jth layout tokens zmj ∈ zm under the
previously generated image tokens zx1:j−1 ⊂ zx and layout
tokens zm1:j−1 ⊂ zm. In particular, the probability is formu-
lated as,

pθ(z
x
j , z

m
j , zx1:j−1, z

m
1:j−1|t)=

j∏
i=1

pθ(z
x
i , z

m
i |zx1:i−1, zm1:i−1, t).

Then, the zxj and zmj can be obtained as following,

zxj , z
m
j = argmax

zx
j ,z

m
j

pθ(z
x
j , z

m
j , zx1:j−1, z

m
1:j−1|t). (2)

After obtaining the layout tokens zm and image tokens zx,
we can generate the corresponding layout m and image
x through Layout-VQGAN (Sec. 3.2) and Image-VQGAN
[7]. Figure 2 a) shows the process.

Moreover, if the layout tokens ẑmi are given, we could
generate the corresponding image satisfying the given lay-
out. Similarity, the probability is

pθ(z
x
j , z

m
j , zx1:j−1, ẑ

m
1:j−1|t)=

j∏
i=1

pθ(z
x
i , z

m
i |zx1:i−1, ẑ

m
1:i−1, t).

We will ignore the prediction zmj because of the given ẑm.
the zxj can be obtained as,

zxj = argmax
zx
j ,z

m
j

pθ(z
x
j , z

m
j , zx1:j−1, ẑ

m
1:j−1|t). (3)

Figure 2. b) shows the process.

3.2. Layout VQGAN

As the joint-decoding transformer need the layout tokens
to guide the decoding training, we rasterize a layout struc-
ture into a layout image, where values of each pixel denote
the class of the corresponding object. Then, we present
a new Layout-VQGAN to transfer the layout image into
the layout tokens. However, different from VQGAN [7]
handling the RGB data, the Layout-VQGAN processes the
class information, where the set of class labels is unordered.

Specially, given layout images m, we can calculate the
closest codebook entries (Layout Tokens) zm and recon-
struction m̂ as,zm = Q(γm(m)) = argmin

zm∈Z
∥γm(m)− zm∥22,

m̂ = ϕm(zm) = ϕm(Q(γm(m))).
(4)

where Q(·) is an element-wise quantization function, Z ⊂
RNz is the learned codebook, where Nz is the dimensional-
ity of code, γm and ϕm are the encoder and decoder of the
Layout-VQGAN for layout.

The loss function of the Layout-VQGAN is

LVQ(γm, ϕm,Z)

=Lquant(γm,Z)−
∑
i,j

M∑
c=1

mc
i,j log m̂

c
i,j , (5)

where the last item is the cross entropy between the proba-
bility of the predicted class m̂i,j and the ground-truth mi,j ,
and mc

i,j and m̂c
i,j return the corresponding probability of

the pixel at the ith row and the jth column at c class; Lquant
is the loss for the codebook and the commitment loss [32]
formulated as,

Lquant(γm,Z)

=∥STG(γm(m))− zm∥22 + ∥STG(zm)− γm(m)∥22, (6)

where STG(·) denotes the stop-gradient operation. Back-
propagation through the quantization function is imple-
mented by simply copying the gradients through the com-
puting graph and can be done end-to-end. In addition, to
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Figure 3. Detail-enhanced GAN for the language-related detail
enhancement.

learn a rich codebook, we also exploit a patch-based dis-
criminator to train the encoder and decoder adversarially as
Esser et al. [7].

3.3. Detail-enhanced Module

In this subsection, we present the detail-enhanced mod-
ule to enrich the language-related details based on two facts:
1) visual details could be omitted in the compression of VQ-
GANs [7]; 2) the joint-decoding transformer would not have
sufficient generating capacity. Besides, the transformer is
hard to model all finer-grained visual details based on the
finite computing resources and text-image dataset. How-
ever, the visual details could be modeled by a GAN-based
language-guided image manipulation under the limited re-
source.

Specifically, in Figure 3, given a generated image x̂ from
the joint transformer, VGG is exploited to extract regional
features Mx. For a target text description t, an LSTM-RNN
model is employed to get the word embeddings Mt and sen-
tence code ct. Then, a feature extractor E extracts the inner
features from x̂, followed by the attentional module FAtten,
the spatial and channel-wise attention as defined in Mani-
GAN [12], to fuse the textual features and output inner fea-
tures h0. Next, we exploit an Affine Combination Module
(ACM) to retain more visual details as,

h1 = FACM(h0,MI), (7)

where FACM denotes as process of ACM,

FACM(h,M) = h⊙W (M) + b(M), (8)

where W (M) and b(M) compute weights and biases by
given regional features M ; ⊙ is a Hadamard element-wise
product. Given h1, we use an upsampling module F0, con-
sisting of several residual net and an upsampling layer, to
compute the features at a high-resolution. Finally, we uti-
lize another ACM to try to retain original features more,
then a generator G to transfer the inner features into final
RGB images x̃.

3.3.1 Loss Function and Training

Given an enhanced image x̃, a input image x, and the cor-
responding caption t, the loss for generator G is,

LG(x, t) =−Ex̃∼PG(x,t){logD(x̃|t)+LDAMSM(x̃, t)

+∥x−x̃∥2+∥VGG(x)−VGG(x̃)∥2},

where D includes the conditional and unconditional out-
put of the discriminator; LDAMSM is defined in AttnGAN.
VGG(·) is the feature extractor. To avoid over-editing and
retain image quality, we use ∥x−x̃∥2+∥VGG(x)−VGG(x̃)∥2
in the generator loss. Besides, we employ LDAMSM to en-
courage the text-related finer-grained editing and prevent
the identity mapping. To exploit the features of a generated
image x̂ from the joint-decoding transformer and ground-
truth x, we train the generator as,

LAllG = LG(x̂, t) + LG(x, t). (9)

In Eq. (9), we train the generator to alleviate the error prop-
agation by jointly considering ground-truth image x.

Similarly, the loss for the discriminator D is,

LD(x, t) = Ex̃∼PG (x,t) logD(x̃|t)− Ex∼Pdata logD(x|t).

We train the discriminator to distinguish the fake images x̃
from the input images, which will guide the generator to
remedy the distorted features.

3.3.2 Global Ranking

Because of the ambiguousness and abstractive property of
natural language and the uncertainty of synthesizing per-
formance of GANs, Detail-enhanced generator may fail to
enhance the images generated by the joint-decoding trans-
former, thus it is better to evaluate the quality of the en-
hanced images. In CogView [6] and DALL-E [24], they
generate multi images for each caption and select the best
one. Because AttnGAN [36] and DM-GAN [42] exploit
the text-image similarity (LDAMSM) to train the generator,
we exploit this similarity to select the best images from the
multi images made by the joint-decoding transformer and
their corresponding enhanced images.

x̂best = argmax
x∈G(X̂ )∪X̂

cos(frnn(t), fcnn3(x)),

where X̂ is a set of images of the given caption t generated
by the joint-encoding transformer, G(X̂ ) is a set of images
enhanced by the detail-enhanced module, frnn and fcnn3 are
the text encoder and the image encoder in AttnGAN [36]
pre-trained on MS-COCO to represent the similarity on the
local domain, cos(·) is the cosine similarity function.



Table 1. Inception Score (IS), Fréchet Inception Distance (FID), R-precision(CLIP), and Semantic Object Accuracy on Class (SOA-C) and
Image Average (SOA-I) on the MS-COCO dataset.

IS↑ FID↓ R-precision(CLIP)↑ SOA-C↑ SOA-I↑
AttnGAN [36] 23.25 ± 0.29 34.98 48.64 ± 0.97 25.72 38.93
DM-GAN [42] 32.20 ± 0.33 26.73 62.85 ± 0.99 33.31 47.93

OPGAN [8] 27.58 ± 0.53 23.21 58.14 ± 1.23 35.17 49.50
DALL-E [24] 17.90 27.50 N/A N/A N/A
CogView [6] 18.20 27.10 N/A N/A N/A

AttnGAN* [36] 25.94 ± 0.62 32.38 54.08 ± 0.61 29.68 43.50
DM-GAN* [42] 34.05 ± 0.49 25.22 66.01 ± 0.85 36.80 51.52

OPGAN* [8] 28.70 ± 0.51 22.04 60.87 ± 1.07 37.73 52.15
Ourfull 34.58 ± 0.39 12.26 70.27 ± 0.53 52.63 63.51

Table 2. Influence and comparison of different components on the
MS-COCO dataset.

IS↑ FID↓ R-precision(CLIP)↑
Ourtrans 30.09 ± 0.32 10.50 64.02 ± 0.92
Ourcbox 33.48 ± 0.41 12.27 68.83 ± 0.89
Ourfull 34.58 ± 0.39 12.26 70.27 ± 0.53
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Figure 4. Diagrams of FID, IS, and R-precision(CLIP) on MS-
COCO for our models by exploiting different β.

4. Experiments
We report the experiments by jointly decoding images

and their layouts, denoted as the subscript “full”, on the
MS-COCO dataset [17]. The baselines are taken from At-
tnGAN [36], DM-GAN [42], OPGAN [8,9] provided by the
authors, and “*” denotes the corresponding baselines with
the same ranking as our models.

4.1. Datasets and Metrics

Datasets: In MS-COCO dataset [17], we exploited the
2014 dataset split, where the training part includes approx-
imately 80,000 images, the testing part contains 40,000 im-
ages, and each image is described by 5 captions.
Evaluation Metrics: We adopt the following metrics,1.
a) Inception score (IS): Inception score [26] is popular and
tendentious to favor meaningful and diverse images. Al-
though it has the notable flaws [1], we exploit it to evaluate
the quality of the synthesized images, as in [9, 36, 39].

1For DALL-E [24] and CogView [6], we only list their Inception score
and Fréchet Inception Distance without blurring for reference. Because
they are trained on a much larger dataset, which does not include MS-
COCO, and make use of the much larger transformers.

An old short train traveling through a wooded area.

A brown wooden bench sitting in a nice green park.

CogView        AttnGAN        DMGAN        OPGAN Ourfull
w/oJ Ourtrans Ourfull* Ourfull

A large group of people watch as a skater does his tricks.

Figure 5. Generated examples: The target text description is above
the corresponding image and the prominent edited characteristics
are marked as bold.

b) Fréchet Inception Distance (FID): We only utilize the
MS-COCO dataset for training and testing. It is suitable to
compare the FID on MS-COCO with baselines. Thus, we
report the FID to measure the distance between synthesized
and real images. A lower FID indicates that the generated
images have higher visual quality.
c) R-precision(CLIP): The text-image similarity of R-
precision [36] is used in training the baseline. The CLIP
model can provide their alignment information in a differ-
ent manner and is pre-trained on a much large-scale dataset.
Thus, similar to the work [20], we exploit the CLIP to
extract features of captions and images and report the R-
precision, denoted as R-precision(CLIP).
d) Semantic object accuracy: Since the object-center syn-
thesis integrates the bounding boxes and object labels of
objects, we can evaluate the class average semantic object
accuracy (SOA-C) [8] and the image average semantic ob-
ject accuracy (SOA-I) [8] to check whether the synthesizing
image includes the given object.

4.2. Quantitative Comparison

In Table 1, compared with AttnGAN*, DM-GAN*, and
OPGAN* trained with the same dataset MS-COCO, the
FID of our model Ourfull largely decreases at least 9.78.
The IS of Ourfull increases 0.53 over DM-GAN*. The R-
precision(CLIP) increases at least 4.26%, respectively. The
SOA-C and SOA-I increase at least 14.90 and 11.36, re-



A single zebra that is bent over eating grass A water buffalo with long horns standing in a wooded area behind a wire fence
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GroundTruth

GroundTruth  OPGAN      Mask Our : 1            2                3                4                5                  6

GroundTruth

Figure 6. Generated examples with disturbing object labels: The target text description is above the corresponding image and the prominent
edited characteristics are marked as bold.

spectively. The results indicate that our model can synthe-
size better images than the baselines in the semantic con-
sistency and synthesizing quality. Compared with DALL-E
and CogView trained with the much larger dataset, the IS
of Ourfull increases at least 16.38, and the FID decreases at
least 14.84.

In Table 2, we analyze the effectiveness of different
components, the subscript “trans” indicates that the out-
put images are generated by the joint-decoding transformer
and without detail enhanced; the subscript “cbox” indicates
that the output images are enhanced by the detail-enhanced
GAN and constrained by the predefined layout; and the sub-
script “full” indicates that the output images are enhanced
by the detail-enhanced GAN. With detail enhancement, al-
though the FID increase about 1.76, the IS increases at least
4.49 and the R-precision(CLIP) increases at least 6.25%,
respectively. The results show that the detail enhancement
can improve the synthesizing quality as well. To analyze
the constraints of object layouts, we enforce the decoding
following the guide of the given layout tokens. The gener-
ating quality of Ourcbox will be lower than that of the un-
constrained model Ourfull because of the left-to-right pro-
cess in auto-regressive decoding, where constraining cur-
rent layout tokens is hard to alter the previously gener-
ated tokens.Besides, without the jointly decoding by using
the original transformer, the IS of Ourw/oJ

full would decrease
0.73, the FID would increase 0.87, the R-precision(CLIP)
would decrease 2.17%, respectively. The results show that
the jointly decoding could improve the synthesizing qual-
ity. In the two-steps generator consisted of “text-layout”
and “layout-image”. The part “text-layout” should model
a Ltext+256 sequence, and another part “layout-image”
should model a Ltext+256+256 sequence, where Ltext is the
length of text. However, in the one-step, we only need
to model a Ltext+256 sequence. Thus, the one-step has

lower complexity, which may be relatively easy to train and
achieve better results.

In Figure 4, the results demonstrate the influence of β:
the sample size used for reranking. With increasing β, the
FID will be decreasing, and IS and R-precision(CLIP) will
be increasing, which indicates that the quality of synthe-
sized images will be improving. In Table 1 and Table 2, the
results are computed by selecting the best one from 10 gen-
erated images, while DALL-E and CogView generate 512
images and 60 images for selecting, respectively. Our re-
sults can be improved further by exploiting more generated
images like DALL-E.

4.3. Qualitative Comparison

In Figure 5, the subscript “full*” denotes that the output
images are the inner images generated by the joint-decoding
transformer before sending to the detail-enhanced GAN.
The results show that images synthesized by transformer-
based models are better than others and the transformer can
synthesize better results on a relatively small dataset. Mod-
els handling the layout jointly may generate more realistic
images than the original ones, which indicates that jointly
modeling layout is beneficial to the synthesis. In addi-
tion, the detail-enhanced GAN could enhance the language-
related details, providing more realistic features. For exam-
ple, given “An old short train traveling through a wooded
area.” in the first row, transformer-based models can gen-
erate more realistic images with visual details of a train
than the baselines, and models with considering the lay-
out, Ourtrans, Ourfull*, Ourfull, can synthesize the images with
correct details about the train and the wooded area. Besides,
the detail-enhanced GAN can alter the wrong ground color.
Influence of object labels in layout:

In Figure 6, we replace the original label in the layout
by a randomly selected label to verify their influence in
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Figure 7. Generated examples with the largest object based on varied bounding boxes: The target text description is above the corresponding
image and the prominent edited characteristics are marked as bold.

the synthesis: the controllability by enforcing models to
obey the given layout (our model can also directly gener-
ate images without needing predicted layout as shown in
Figure 2a) . Given “A single zebra that is bent over eating
grass” in the first example, we replace the ground-truth la-
bel “zebra” with other labels, like “oven”, “truck”, “bench”,
“train”, and “cake”. In the third row of the first example,
with replacing “zebra” by “truck”, our joint transformer will
synthesize an object with the truck shape and the zebra tex-
ture. Given “A water buffalo with long horns standing in a
wooded area behind a wire fence”, we replace the ground-
truth label “cow” by “motorcycle”, our model will try to
generate motorcycle-like objects with two wheels. It is hard
to imagine the combination of the features of “bench” and
the textual features of the given caption for the model, thus,
it may synthesize some degraded images. The results show
that the object label can alter the synthesized result to some
degree and will try to maintain the details corresponding to
the description of the given caption.
Influence of the bounding boxes in layout:

In Figure 7, we alter the original shape of the largest ob-
ject in the layout by gradually scaling the length of one side
of the bounding box to verify their influence in the synthe-
sis. Given “A red and white fire hydran out on a road.” in
the first example, we scale the height of the object “fire hy-
dran” gradually, In the first row, the height is 0 and there
are no “fire hydran” in our generated images. With increas-
ing height, our joint transformer will provide more realistic
details of “fire hydran”. Given “A large tour bus parked
near a street curb.”, the behavior of our model is similar, but
OPGAN fails to eliminate “bus” when the height is 0. The
results indicate that our model can provide a more powerful
object-level controllability and high-quality results.

5. Limitation and Discussion
Our work is trained on MS-COCO, which contains 0.328

million images with variant numbers of each object. It is

better to utilize larger datasets like DALL-E (trained on
3.3 million text-image) and CogView (trained on 30 mil-
lion high-quality text-image pairs). Our transformer con-
tains about 0.305 billion parameters, which is much smaller
than the parameters in DALL-E (up to 12 billion parame-
ters) and CogView (4 billion parameters), and we believe
enlarging our transformer as DALL-E and CogView can
largely improve the performance. Finer-grained visual de-
tails are nearly inexhaustible, and it may be unfeasible to
model them in a transformer with finite resources. We ex-
ploit the detail-enhanced GAN to model the finer-grained
visual details and enrich the language-related features. The
detail-enhanced GAN is a language-guided editing model.
More sophisticated editing model will improve the final re-
sults, which will be a focus of future works.

6. Conclusion
To synthesize high-quality images from the textual de-

scription, we propose an object-enhanced joint-decoding
transformer to auto-regressive generate images without pre-
generating layouts. To complement the missing finer-
grained visual details, we introduce a detail-enhanced GAN
to enrich the language-related features and improve the se-
mantic consistency between the given text and the synthe-
sized images. The experimental results show that our ap-
proach can synthesize high-quality images while providing
more object-centered controllability.
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