
LETTER Communicated by Nicolas Ballas

Artificial Neural Variability for Deep Learning:
On Overfitting, Noise Memorization,
and Catastrophic Forgetting

Zeke Xie
xie@ms.k.u-tokyo.ac.jp
University of Tokyo, Bunkyo-ku, Tokyo 113-0333, Japan and RIKEN Center for AIP,
Chuo-ku, Tokyo 103-0027, Japan

Fengxiang He
fengxiang.he@sydney.edu.au
Shaopeng Fu
shfu7008@sydney.edu.au
University of Sydney, Level 1, Chippendale NSW 2008, Australia

Issei Sato
sato@k.u-tokyo.ac.jp
University of Tokyo, Bunkyo-ku, Tokyo 113-0333, Japan, and RIKEN Center for AIP,
Chuo-ku, Tokyo 103-0027, Japan

Dacheng Tao
Dacheng.Tao@uts.edu.au
University of Sydney, Level 1, Chippendale NSW 2008, Australi

Masashi Sugiyama
sugi@k.u-tokyo.ac.jp
RIKEN Center for AIP, Chuo-ku, Tokyo 103-0027, Japan, and University of Tokyo,
Bunkyo-ku, Tokyo 113-0333, Japan

Deep learning is often criticized by two serious issues that rarely exist
in natural nervous systems: overfitting and catastrophic forgetting. It can
even memorize randomly labeled data, which has little knowledge be-
hind the instance-label pairs. When a deep network continually learns
over time by accommodating new tasks, it usually quickly overwrites
the knowledge learned from previous tasks. Referred to as the neural
variability, it is well known in neuroscience that human brain reactions
exhibit substantial variability even in response to the same stimulus.
This mechanism balances accuracy and plasticity/flexibility in the mo-
tor learning of natural nervous systems. Thus, it motivates us to design a
similar mechanism, named artificial neural variability (ANV), that helps
artificial neural networks learn some advantages from “natural” neural
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networks. We rigorously prove that ANV plays as an implicit regu-
larizer of the mutual information between the training data and the
learned model. This result theoretically guarantees ANV a strictly im-
proved generalizability, robustness to label noise, and robustness to
catastrophic forgetting. We then devise a neural variable risk minimiza-
tion (NVRM) framework and neural variable optimizers to achieve ANV
for conventional network architectures in practice. The empirical studies
demonstrate that NVRM can effectively relieve overfitting, label noise
memorization, and catastrophic forgetting at negligible costs.

1 Introduction

Inspired by natural neural networks, artificial neural networks have
achieved comparable performance with humans in a variety of applica-
tion domains (LeCun, Bengio, & Hinton, 2015; Witten, Frank, Hall, &
Pal, 2016; Silver et al., 2016; He, Zhang, Ren, & Sun, 2016; Litjens et al.,
2017). Deep neural networks are usually highly overparameterized (Keskar,
Mudigere, Nocedal, Smelyanskiy, & Tang, 2017; Dinh, Pascanu, Bengio, &
Bengio, 2017; Arpit et al., 2017; Kawaguchi, Huang, & Kaelbling, 2019);
the number of weights is usually way larger than the sample size. The ex-
treme overparameterization gives deep neural network excellent approx-
imation (Cybenko, 1989; Funahashi, 1989; Hornik, Stinchcombe, & White,
1989; Hornik, 1993) and optimization (Allen-Zhu, Li, & Song, 2019; Arora,
Cohen, & Hazan, 2018; Li & Liang, 2018; Allen-Zhu, Li, & Liang, 2019) abil-
ities, as well as a prohibitively large hypothesis capacity. This phenomenon
makes almost all capacity-based generalization bounds vacuous. Besides,
former empirical results demonstrate that deep neural networks almost
surely achieve zero training error even when the training data are randomly
labeled (Zhang, Bengio, Hardt, Recht, & Vinyals, 2017). This memorization
of noise suggests that deep learning is good at overfitting.

Deep learning performs poorly at learning multiple tasks from dynamic
data distributions (Parisi, Kemker, Part, Kanan, & Wermter, 2019). The func-
tionality of artificial neural networks is sensitive to weight perturbations.
Thus, continually learning new tasks can quickly overwrite the knowl-
edge learned through previous tasks, which is called catastrophic forget-
ting (McCloskey & Cohen, 1989; Goodfellow, Mirza, Xiao, Courville, &
Bengio, 2013). Neuroscience has motivated a few algorithms for overcom-
ing catastrophic forgetting and variations in data distributions (Kirkpatrick
et al., 2017; Zenke, Poole, & Ganguli, 2017; Chen, Mai, Xiao, & Zhang,
2019).

Natural neural networks have much better generalizability and robust-
ness. Can we learn from human brains again for more innovations in
deep learning? An extensive body of work in neuroscience suggests that
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Artificial Neural Variability for Deep Learning 2165

neural variability is essential for learning and proper development of
human brains, which refers to the mechanism that human brain reac-
tions exhibit substantial variability even in response to the same stimulus
(Churchland, Byron, Ryu, Santhanam, & Shenoy, 2006; Churchland et al.,
2010; Dinstein, Heeger, & Behrmann, 2015). Neural variability acts as a cen-
tral role in motor learning, which helps balance the need for accuracy and
the need for plasticity and flexibility (Fetters, 2010). The ever-changing en-
vironment requires performers to constantly adapt to both external (e.g.,
slippery surface) and internal (e.g., injured muscle) perturbations. It is also
suggested that adult motor control systems can perform better by generat-
ing neural variability actively in order to leave room for adaptive plasticity
and flexibility (Tumer & Brainard, 2007). An appropriate degree of neural
variability is necessary to studies of early development (Hedden & Gabrieli,
2004; Ölveczky, Otchy, Goldberg, Aronov, & Fee, 2011). A study on Parkin-
sons disease suggests that the learning ability to for new movements and
adaptability to perturbations is dramatically reduced when neural variabil-
ity is low (Mongeon, Blanchet, & Messier, 2013).

Inspired by the neuroscience knowledge, this letter formulates artificial
neural variability theory for deep learning. We mathematically prove that
ANV plays the role of an implicit regularizer of the mutual information be-
tween learned model weights and the training data. A beautiful coincidence
in neuroscience is that neural variability in the rate of response to a steady
stimulus also penalizes the information carried by nerve impulses (spikes)
(Stein, Gossen, & Jones, 2005; Houghton, 2019). Our theoretical analysis
guarantees that ANV can strictly relieve overfitting, label noise memoriza-
tion, and catastrophic forgetting.

We further propose a neural variable risk minimization (NVRM) frame-
work, which is an efficient training method to achieve ANV for artificial
neural networks. In the NVRM framework, we introduce weight perturba-
tions during inference to simulate the neural variability of human brains
to relieve overfitting and catastrophic forgetting. The empirical mean of
the loss in the presence of weight perturbations is referred to as neural
variable risk (NVR). Similar to neural variability, replacing the conventional
empirical risk minimization (ERM) by NVRM would balance the accuracy-
plasticity trade-off in deep learning.

The rest of this letter is organized as follows. In section 2, we propose the
neural variability theory and mathematically validate that ANV relieves
overfitting, label noise memorization, and catastrophic forgetting. In sec-
tion 3, we propose the NVRM framework and neural variable optimizers,
which can achieve ANV efficiently in practice. In section 4, we conduct ex-
tensive experiments to validate the theoretical advantages of NVRM. In par-
ticular, training neural networks via neural variable optimizers can easily
achieve remarkable robustness to label noise and weight perturbation. In
section 5, we conclude our main contribution.
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2166 Z. Xie et al.

2 Neural Variability Theory

In this section, we formally introduce artificial neural variability into deep
learning. We denote a model with the weights θ as M(θ ) and the train-
ing data set as S = {(x(i), y(i) )}m

i=1 drawn from the data distribution S . We
define the empirical risk over the training data set S as L̂(θ ) = L(θ, S) =
1
m

∑m
i=1 L(θ, (x(i), y(i) )), and the population risk over the data distribution

S as L(θ ) = E(x,y)∼S [L(θ, (x, y))]. We formally define (b, δ)-neural variability
((b, δ)-NV) as definition 1.

Definition 1 (Neural Variability/Regional Flatness). Suppose L(θ, S) is the loss
function for the model M(θ ) on the data set S, θ̂ obeys a gaussian distribution
centered at θ as θ̂ ∼ N (θ, b2I), and

|Eθ̂∼N (θ,b2I)[L(θ̂ , S)] − L(θ, S)]| ≤ δ,

where | · | denotes the absolute value, and both δ and b are positive. Then the model
M(θ ) is said to achieve (b, δ)-neural variability at θ on the data set S. It can also
be said the model achieves (b, δ)-regional flatness at θ on the data set S.

The definition has a similar form to (Cε, A)-sharpness defined by Keskar
et al. (2017). A model M(θ ) with (b, δ)-neural variability can work almost
equally well when its weights are randomly perturbed as θ̂ ∼ N (θ, b2I).
This definition mimics the neuroscience mechanism that human brains can
work well or even better by actively generating perturbations (Tumer &
Brainard, 2007). The definition of (b, δ)-neural variability is also a measure
of robustness to weight perturbations and a measure of weight uncertainty
for Bayesian neural networks.

2.1 Generalization. In this section, we formulate the information the-
oretical foundation of (b, δ)-neural variability by using the PAC-Bayesian
framework (McAllester, 1999a, 1999b). The PAC-Bayesian framework pro-
vides guarantees on the expected risk of a randomized predictor (hypoth-
esis) that depends on the training data set. The hypothesis is drawn from
a distribution Q and sometimes referred to as a posterior. We then denote
the expected risk with respect to the distribution Q as L(Q) and the empir-
ical risk with respect to the distribution Q as L̂(Q). Suppose P is the prior
distribution over the weight space �.

Lemma 1 (The PAC-Bayesian Generalization Bound (McAllester, 1999b)).
For any real � ∈ (0, 1), with probability at least 1 − �, over the draw of the train-
ing data set S, the expected risk for all distributions Q satisfies

L(Q) ≤ L̂(Q) + 4

√
1
m

[
KL(Q‖P) + ln

(
2m
�

)]
,

where KL(Q‖P) denotes the Kullback “Leibler divergence from P to Q.
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Artificial Neural Variability for Deep Learning 2167

The PAC-Bayesian generalization bound closely depends on the prior P
over the model weights. We make a mild assumption 1.

Assumption 1. The prior over model weights is gaussian, P = N (0, σ 2I).

Assumption 1 justified as it can be interpreted as weight decay, which
is widely used in related papers (Graves, 2011; Neyshabur, Bhojanapalli,
McAllester, & Srebro, 2017; He, Liu, & Tao, 2019). We note that σ 2 is very
large in practice, as σ 2 is equal to the inverse weight decay strength.

We consider a distribution Qnv over model weights of the form θ + ε,
where θ is drawn from the distribution Q and ε ∼ N (0, b2I) is a ran-
dom variable. Following the theoretical analysis, particularly equation 7 of
Neyshabur et al. (2017), we formulate theorem 1.

Theorem 1 (The Generalization Advantage of ANV). Suppose the model
M(θ�) achieves (b, δ)-neural variability at θ�, and assumption 1 holds. Then for
any real � ∈ (0, 1), with probability at least 1 − �, over the draw of the training
data set S, the expected risk for all distributions Qnv satisfies

L(Qnv) ≤ L̂(θ�) + 4

√
1
m

[
KL(Qnv‖P) + ln

(
2m
�

)]
+ δ,

where N is the number of model weights and KL(Qnv‖P) = ∑N
i=1

[
log

(
σ
b

) +
b2+θ�2

i
2σ 2 − 1

2

]
.

We leave all proofs for appendix A. We note that KL(Qnv‖P) as the func-
tion of b decreases with b for b ∈ (0, σ ), and reaches the global minimum
at b = σ . As σ is much larger than 1 and b in practice, the PAC-Bayesian
bound monotonically decreases with b given δ. The bound is tighter than
the bound in lemma 1 when the model has strong ANV, which means b is
large given a small δ.

It is known that the information in the model weights relates to
overfitting (Hinton & Van Camp, 1993) and flat minima (Hochreiter &
Schmidhuber, 1997). Achille, Paolini, and Soatto (2019) argued that the in-
formation in the weights controls the PAC-Bayesian bound. We show that
the generalization bound in theorem 1 positively correlates with the mu-
tual information of learned model weights and training data. Given two
random variables θ and S, their Shannon mutual information is defined as
I(θ; S) = ES∼S [KL(p(θ |S)‖p(θ ))], which is the expected Kullback-Leibler di-
vergence from the prior distribution p(θ ) of θ to the distribution p(θ |S) after
an observation of S (Cover & Thomas, 2012). In the case of theorem 1, we
have

ES∼S [KL(Qnv‖P)] = I(θ; S), (2.1)
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2168 Z. Xie et al.

where θ ∼ Qnv. It indicates that penalizing the mutual information of
the learned model weights and training data, I(θ; S), is equivalent to de-
creasing the expected KL(Qnv‖P), which may improve generalization. As
S → θ → θ + ε is a Markov process, we have the data processing mu-
tual information inequality I(θ + ε; S) < I(θ; S). It indicates that ANV reg-
ularizes the mutual information between the learned model weights and
training data. This theoretical evidence is quite close to the neuroscience
mechanism of penalizing the information carried by nerve impulses (Stein
et al., 2005).

Different from the PAC-Bayesian approach, another theoretical frame-
work for the generalization bound based on mutual information was
proposed by Xu and Raginsky (2017). Following these authors, we for-
mulate an alternative mutual-information-based generalization bound in
appendix B.

2.2 Robustness to Label Noise. Noisy labels can remarkably damage
the generalization of deep networks, because deep networks can com-
pletely memorize corrupted label information (Zhang et al., 2017). Mem-
orizing noisy labels is one of the most serious overfitting issues in deep
learning. We will show that ANV relieves deep networks from memorizing
noisy labels by penalizing the mutual information of the model weights θ

and the labels y conditioned on the inputs x.
In section 4 of Achille and Soatto (2018), the expected cross-entropy loss

can be decomposed into several terms to describe it. If the data distribution
S is fixed, the expected cross-entropy loss for the training performance can
be decomposed into three terms:

H f (y|x, θ ) = ESEθ∼Q(θ |S)

[
m∑

i=1

− log f (y(i)|x(i), θ )

]
(2.2)

= H(y|x) + Ex,θ∼Q(θ |S)KL[p(y|x)‖ f (y|x, θ )] − I(θ; y|x), (2.3)

where f denotes the model’s map from an input x to a class distribution and
H(·) denotes the entropy E[− log(·)]. The meaning of each term has been in-
terpreted by Achille and Soatto (2018) in detail. The first term relates to the
intrinsic error that we would commit in predicting the labels even if we
knew the underlying data distribution. The second term relates to the effi-
ciency of the model and the class of functions f with respect to which the
loss is optimized. Here we focus on the last term: the label memorization can
be given by the mutual information between the model weights and the la-
bels conditioned on inputs, namely, I(θ; y|x). In the traditional paradigm of
deep learning, minimizing −I(θ; y|x) is expected. Thus, deep learning easily
overfits noisy labels. Noisy labels as outliers of the data distribution imply
a positive value of I(θ; y|x), which requires more information to be mem-
orized. We need to reduce I(θ; y|x) effectively to prevent deep networks
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Artificial Neural Variability for Deep Learning 2169

from overfitting noisy labels. With this approach, theorem 2.1 of Harutyun-
yan, Reing, Steeg, and Galstyan (2020) also supported that memorization of
noisy labels is prevented by decreasing I(θ; y|x).

Suppose a model M(θ ) achieves (b, δ)-NV, δ is small, and we inject
weight noise ε to this model. We have a Markov process as y|x → θ → θ̂ ,
where we denote θ + ε as θ̂ . Based on equation 2.2, we have

H f (y|x, θ̂ ) = H(y|x) + Ex,θ∼Qnv(θ |S)KL[p(y|x)‖ f (y|x, θ )] − I(θ̂; y|x), (2.4)

According to definition 1, the model M(θ̂ ) may achieve nearly equal train-
ing performance to M(θ ) given small δ. At the same time, obviously,
I(θ̂; y|x) is smaller than I(θ; y|x) as ε penalizes the mutual information. This
suggests that increasing b given δ for a (b, δ)-neural variable model can pe-
nalize the memorization of noisy labels by regularizing the mutual infor-
mation of learned model weights and training data.

2.3 Robustness to Catastrophic Forgetting. The ability to continu-
ally learn over time by accommodating new tasks while retaining previ-
ously learned tasks is referred to as continual or lifelong learning (Parisi
et al., 2019). However, the main issue of continual learning is that artificial
neural networks are prone to catastrophic forgetting. In natural neural sys-
tems, neural variability leaves room for the excellent plasticity and con-
tinual learning ability (Tumer & Brainard, 2007). It is natural to conjecture
that ANV can help relieve catastrophic forgetting and enhance continual
learning.

We take regularization-based continual learning (Kirkpatrick et al., 2017;
Zenke et al., 2017; Aljundi, Babiloni, Elhoseiny, Rohrbach, & Tuytelaars,
2018; Doan, Bennani, Mazoure, Rabusseau, & Alquier, 2020) as an example.
The basic idea of this learning is to strongly regularize weights most rel-
evant to previous tasks. Usually the regularization is strong enough to fix
learning near the solution learned from previous tasks. In a way, the model
tends to learn in the overlapping region of optimal solutions for multiple
tasks. The intuition behind ANV is clear: if a model is more robust to weight
perturbation, it will have a wider optimal region shared by multiple tasks.

Suppose a model M(θ ) continually learns tasks A and B, where the
learned solutions are, respectively, θ�

A ∼ QA and θ�
B ∼ QB. The distribution

QB describes model weights of the form θ�
A + ε, where ε is a random vari-

able. For any real � ∈ (0, 1), with probability at least 1 − �, over the draw
of the training data set S for task A, the expected risk for all distributions
QB satisfies

L(QB) ≤ L̂(QB) + 4

√
1
m

[
KL(QB‖P) + ln

(
2m
�

)]
. (2.5)
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2170 Z. Xie et al.

For θ�
B = θ�

A + ε, as S → θ�
A → θ�

B is a Markov process, and the weight
perturbation ε is learned from the training data set SB (of task B) only,
the data processing mutual information inequality I(θ�

B; S) < I(θ�
A; S) still

holds. We recall the mutual information analysis above and have I(θ�
B; S) =

ES∼S [KL(QB‖P)]. Thus, we have

L(QB) − L̂(QB) = [L(QB) − L̂(QA)] − [L̂(QB) − L̂(QA)] (2.6)

< 4

√
1
m

[
KL(QB‖P) + ln

(
2m
�

)]
. (2.7)

Considering the expectation with respect to the data distribution, we obtain

ES[(L(QB) − L̂(QA) − δAB)2] <
16
m

[
I(θ�

B; S) + ln
(

2m
�

)]
, (2.8)

where δAB = L̂(QB) − L̂(QA) and I(θ�
B; S) < I(θ�

A; S). So the population risk
L(QB) (for task A) can be well bounded by the empirical risk increasing δAB

and the mutual information I(θ�
A; S). Here δAB, the empirical risk increasing

due to weight perturbation, is a kind of measure of robustness to weight
perturbation. It suggests that increasing robustness to weight perturbation
can help relieve catastrophic forgetting.

3 Neural Variable Risk Minimization

In this section, we aim to learn empirical minimizers with ANV, given a
conventional network architecture. Our method is to minimize the empiri-
cal risk in a certain region rather than the empirical loss at a single point,

LNV(θ, S) = Eθ̂∼N (θ, b2I)[L(θ̂ , S)], (3.1)

where b is the variability hyperparameter. We call the risk the neural vari-
able risk (NVR), and call optimizing the NVR neural variable risk minimiza-
tion (NVRM). The model M(θ�) learned by NVRM can naturally achieve
(b, δ)-neural variability, where δ = |LNV(θ�, S) − L(θ�, S)|. In this letter, we
usually let ε obey a gaussian distribution, because gaussian noise is the
noise type that penalizes information most effectively given a certain vari-
ance. But it is easy to generalize our framework to other noise types, such
as Laplace noise and uniform noise. The noise type can be regarded as a
hyperparameter.

The next question is, How to perform NVRM? Unfortunately, NVR is in-
tractable in practice. But it is possible to approximately estimate the NVR
and its gradient by sampling L̂NV(θ, S) = L(θ + ε, S), where ε ∼ N (0, b2I).
This unbiased estimation method is also used in variational inference
(Graves, 2011).
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Artificial Neural Variability for Deep Learning 2171

We propose a class of novel optimization algorithms to employ NVRM
in practice. We can write NVRM update as

θt = θt−1 − η
∂L(θt−1 + εt−1, (x, y))

∂θ
. (3.2)

NVRM is mimicking the neural variability of human brains in response to
the same stimulus. NVRM exhibits the variability of predictions and back-
propagation even in response to the same inputs. This update cannot be
implemented inside an optimizer. But if we introduce θ̂t = θt + εt into the
NVRM update, then we obtain a novel updating rule:

θ̂t = θ̂t−1 − η
∂L(θ̂t−1, (x, y))

∂θ̂
+ εt − εt−1. (3.3)

We can combine this updating rule with popular optimizers, such as SGD
(Bottou, 1998; Sutskever, Martens, Dahl, & Hinton, 2013); then we eas-
ily get a class of novel optimization algorithms, such as NVRM-SGD.
We call this class of optimization algorithms neural variable optimizers.
The pseudocode of NVRM-SGD is displayed in algorithm 1. Similarly,
we can also easily obtain NVRM-Adam by adding the four colored lines
of algorithm 1 into adaptive momentum estimation (Adam) (Kingma &
Ba, 2014). The source code is available at https://github.com/zeke-xie/
artificial-neural-variability-for-deep-learning. We note that it is necessary
to apply the denoising step before we evaluate the model learned by NVRM
on test data sets, as θ̂t = θt + εt . We also call such weight perturbations vir-
tual perturbations, which need to be applied before inference and removed
after backpropagation. We can easily empower neural networks with ANV
by importing a neural variable optimizer to train them.

3.1 A Deep Learning Dynamical Perspective. We note that it is pos-
sible to theoretically analyze NVRM from a deep learning dynamical per-
spective. NVRM actually introduces Hessian-dependent gradient noise into
learning dynamics instead of injected white gaussian noise in conven-
tional noise injection methods, as the second-order Taylor approximation
∇L(θ + ε) ≈ ∇L(θ ) + ∇2L(θ )ε holds for small weight perturbation. Zhu,
Wu, Yu, Wu, and Ma (2019) argued that anisotropic gradient noise is of-
ten beneficial for escaping sharp minima. Xie, Sato, and Sugiyama (2021)
and Xie, Wang, Zhang, Sato, and Sugiyama (2020) further quantitatively
proved that Hessian-dependent gradient noise is exponentially helpful for
learning flat minima. Again, flat minima (Hochreiter & Schmidhuber, 1997)
are closely related to overfitting and the information in the model weights.
This can mathematically explain the advantage of NVRM from a different
perspective. We leave the diffusion-based approach as future work.
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2172 Z. Xie et al.

3.2 Related Work. One related line of research is injecting weight noise
into deep networks during training (An, 1996; Neelakantan et al., 2015;
Zhou, Liu, Li, Lin, Zhou, & Zhao, 2019). For example, perturbed stochas-
tic gradient descent (PSGD) is SGD with a conventional weight noise injec-
tion method, which is displayed in algorithm 2. Another famous example is
stochastic gradient langevin dynamics (SGLD) (Welling & Teh, 2011), which
differs from PSGD only in the magnitude of injected gaussian noise. How-
ever, this conventional line does not remove the injected weight noise after
each iteration, which makes it essentially different from our method. In sec-
tion 4, we empirically verify that the denoising step is significantly helpful
for preventing overfitting.

Variational inference (VI) for Bayesian neural networks (Graves, 2011;
Blundell, Cornebise, Kavukcuoglu, & Wierstra, 2015; Khan et al., 2018)
aims at estimating the posterior distribution of model weights given train-
ing data. VI requires expensive costs to update the posterior distribution
(model uncertainty) during training. This line believes estimating the ex-
act posterior is important but ignores the importance of enhancing model
certainty. In contrast, our method is the first to actively encourage model
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Artificial Neural Variability for Deep Learning 2173

uncertainty for multiple benefits by choosing the variability hyperparam-
eter b. ANV may be regarded as applying a neuroscience-inspired hyper-
prior over model uncertainty. Inspired by recent work on Bayesian neural
networks, we conjecture that the NVRM framework could help improve ad-
versarial robustness (Carbone et al., 2020) and fix overconfidence problems
(Kristiadi, Hein, & Hennig, 2020).

Another related line of research is randomized smoothing (Duchi,
Bartlett, & Wainwright, 2012; Nesterov & Spokoiny, 2017). Wen et al. (2018)
applied the idea of randomized smoothing in training of deep networks and
proposed the so-called SmoothOut method to optimize a weight-perturbed
loss. This is also what the proposed NVRM does. We note that the origi-
nal SmoothOut is actually a different implementation of NVRM with uni-
form noise, which both belong to Randomized Smoothing. However, this
line of research (Duchi et al., 2012; Wen et al., 2018) focused only on im-
proving performance on clean data sets by escaping from sharp minima. To
the best of our knowledge, our work is the first along this line to theoret-
ically and empirically analyze label noise memorization and catastrophic
forgetting.

In summary, our letter further made two important contributions be-
yond the existing related work: (1) we discovered that NVRM can play a
very important role in regularizing mutual information, which helps relieve
label noise memorization and catastrophic forgetting, and (2) we imple-
mented the weight-perturbed gradient estimation as a simple and effective
optimization framework. NVRM as an optimizer is more elegant and easier
to use than the existing methods like SmoothOut, which need to update the
weights to calculate a perturbed loss before each back propagation.

4 Empirical Analysis

We conducted systematic comparison experiments to evaluate the pro-
posed NVRM framework. To secure a fair comparison, every experimen-
tal setting was repeatedly trialed 10 times while all irrelevant variables
were strictly controlled. We evaluated NVRM by the mean performance
and the standard deviations over 10 trials. Implementation details are in
appendix C.

4.1 Robustness to Weight Perturbation. For ResNet-34 (He et al., 2016)
trained on clean data, CIFAR-10 and CIFAR-100 (Krizhevsky & Hinton,
2009), we perturbed the weights by isotropic gaussian noise of different
noise scales to evaluate the test accuracy to weight perturbation. Figure 1
demonstrates that the models trained by NVRM are significantly more ro-
bust to weight perturbation and have lower expected minima sharpness
defined by Neyshabur et al. (2017). This empirically verifies that the con-
ventional neural networks trained via NVRM indeed learn strong ANV.
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Figure 1: Curves of test accuracy to weight noise scale. The NVRM-trained net-
work can almost retain reasonably well performance, while the SGD-trained
network has nearly lost all learned knowledge due to relatively large weight
noise.

Figure 2: NVRM with various variability scales b can consistently improve gen-
eralization. Left two panels: Curves of generalization gap. Right two panels:
Curves of test accuracy. We train VGG-16 on CIFAR-10 and MobileNetV2 on
CIFAR-100. More results of VGG-16 on CIFAR-100 and MobileNetV2 on CIFAR-
10 are in appendix E.

4.2 Improved Generalization. Model: VGG-16 (Simonyan & Zisser-
man, 2015) and MobileNetV2 (Sandler, Howard, Zhu, Zhmoginov, & Chen,
2018). Data set: CIFAR-10 and CIFAR-100. We evaluated the test accuracy
and the generalization gap, which is defined as the difference between
the training accuracy and the test accuracy. The results in Figure 2 clearly
demonstrate that NVRM can significantly narrow the generalization gap
while slightly improving the test accuracy, which was also supported by
Nesterov and Spokoiny (2017) and Wen et al. (2018).

4.3 Robustness to Noisy Labels. Model: ResNet-34. Data set: CIFAR-10
and CIFAR-100. We inserted two classes of label noise into the data sets: the
uniform flip label noise (symmetric label noise) and the pair-wise flip label
noise (asymmetric label noise). Figure 3 demonstrates that SGD seriously
overfits noisy labels; meanwhile, NVRM can avoid memorizing noisy labels
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Figure 3: Curves of test accuracy to epochs of ResNet-34. NVRM with default
b = 0.05 can significantly relieve memorizing noisy labels. Particularly, NVMR
stops learning when the training error is close to the label noise rate. SGD al-
most memorizes all noisy labels, while NVRM almost only learns clean labels.
The four columns are for asymmetric label noise rate 10%, 20%, 30%, and 40%,
respectively.

effectively. The experimental results of symmetric label noise in appendix
E also support our theory.

4.4 Robustness to Catastrophic Forgetting. Model: Three-layer fully-
connected network (FCN). Data set: Permuted MNIST (LeCun, 1998). Con-
tinual learning setting: FCN continually learns five tasks, and we made
different random pixels permutation for each task. We evaluated the
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Figure 4: NVRM prevents catastrophic forgetting effectively with various vari-
ability scales b (weight noise scales). Left: The accuracy of the first task after
continually learning five tasks. Right: The mean accuracy of all five tasks after
continually learning five tasks.

Figure 5: Curves of test accuracy to the number of tasks in continually learning
Permuted MNIST. Left: The accuracy of the base task with EWC. Right: The
mean accuracy of all learned tasks with EWC. The importance hyperparameter
of EWC is set to 300 and 1000. NVRM enhances EWC effectively.

accuracy of the base task (the first task) and the mean accuracy of all learned
tasks after each task. Figure 4 shows that NVRM forgets the knowledge
learned from the previous task much more slowly than standard empiri-
cal risk minimization. The empirical results demonstrate that the models
learned under NVRM framework are significantly more robust to catas-
trophic forgetting. In Figure 5, we also verified that NVRM can enhance
a popular neuroscience-inspired continual learning method, elastic weight
consolidation (EWC; Kirkpatrick et al., 2017). We present the incremental
class learning task in appendix C.
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Figure 6: The denoising step is helpful for preventing overfitting. Data set:
CIAF-10 with 40% label noise. While we are the first to report that PSGD may
prevent memorizing noisy labels much better than SGD, NVRM can still out-
perform PSGD significantly by nearly seven points.

4.5 Is the Denoising Step Really Helpful? We empirically compared
the NVRM approach with PSGD, which uses a conventional noise injection
method, on label noise memorization. We display the test errors of train-
ing ResNet34 on CIFAR-10 with 40% asymmetric label noise under various
variability scales/weight noise scales in Figure 6. The results demonstrate
that, surprisingly, PSGD may prevent memorizing noisy labels much bet-
ter than SGD, which has not been reported by existing work yet. However,
NVRM can still outperform PSGD significantly for learning with noisy la-
bels. Thus, the denoising step in NVRM is not theoretically reasonable but
also empirically powerful.

4.6 Choices of Noise Types. We do not have to let ε be gaussian. We
consider the noise type as a hyperparameter, and empirically compare three
common noise types—gaussian noise, Laplace noise, and uniform noise—
on CIAF-10 with noisy labels—because the tasks of learning with noisy la-
bels can well reflect the ability to prevent overfitting. We display the test
errors of training ResNet34 on CIFAR-10 under various variability scales b
with 40% asymmetric label noise in Figure 7. The result demonstrates that
with a wide range of the variability hyperparameter b, NVRM with three
noise types can achieve remarkable improvements over the baseline SGD.
This is not surprising because any of this noise may theoretically regular-
ize the mutual information. Note that NVRM uniform is identical to the
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Figure 7: Choices of noise types for NVRM. Data set: CIAF-10 with 40% label
noise. With a proper variability scale (weight noise scale) b, NVRM gaussian
outperforms NVRM Uniform and NVRM Laplace by nearly one point, while
NVRM Uniform is more robust to the variability scale.

original smoothout, which applies uniform smoothing to SGD. The origi-
nal paper of smoothout (Wen et al., 2018) argued that uniform noise may
be slightly better than gaussian noise on clean data sets. However, exist-
ing work (Duchi et al., 2012; Wen et al., 2018) did not discover the ability
of randomized smoothing or smoothout to learn with noisy label. Figure 7
suggests that the conclusion of noise types is richer than Wen et al. (2018)
expected, and there is no “free lunch.” We discovered that the optimal test
performance of NVRM gaussian is better than NVRM uniform and NVRM
Laplace by nearly one point, while NVRM Uniform is more robust to the
variability scale. It indicates that gaussian noise and uniform noise have
different advantages.

5 Conclusion

A well-known term in neuroscience, neural variability, suggests that the
human brain response to the same stimulus exhibits substantial variabil-
ity and significantly contributes to balancing the accuracy and plastic-
ity/flexibility in motor learning in natural neural networks. Inspired by
this mechanism, this letter introduced ANV for balancing the accuracy
and plasticity/flexibility in artificial neural networks. We proved that ANV
acts as an implicit regularizer to control the mutual information between
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the training data and the learned model, which further secures prevent-
ing the learned model from overfitting and catastrophic forgetting. These
two abilities are theoretically related to the robustness to weight perturba-
tions. The proposed NVRM framework is an efficient approach to achiev-
ing ANV for artificial neural networks. The empirical results demonstrate
that our method can (1) enhance the robustness to weight perturbation, (2)
improve generalizability, (3) relieve the memorization of noisy labels, and
(4) mitigate catastrophic forgetting. Particularly, NVRM, an optimization
approach, may handle memorization of noisy labels well at negligible com-
putational and coding costs. One line code of importing a neural variable
optimizer is all you need to achieve ANV for your models.

Appendix A: Proofs

A.1 Proof of Theorem 1.

Proof. We consider a distribution Qnv over predictors with weights of the
form θ + ε, where θ is drawn from the distribution Q and ε ∼ N (0, b2I) is a
random variable indicating weight perturbation. Suppose the model M(θ )
achieves (b, δ(θ ))-neural variability, which follows the notation of the ex-
pected sharpness used by Neyshabur et al. (2017). We start our theoretical
analysis based on equation 7 of Neyshabur et al. (2017). We can bound the
expected risk over the distribution Qnv as

L(Qnv) ≤ L̂(Q) + [L̂(QNV) − L̂(Q)] + 4

√
1
m

[
KL(Qnv‖P) + ln

(
2m
�

)]
,

(A.1)

= L̂(Q) + 4

√
1
m

[
KL(Qnv‖P) + ln

(
2m
�

)]
+ Eθ∼Q[δ(θ )]. (A.2)

We emphasize that this bound holds for any distribution Q (any method of
choosing θ dependent on the training data set) and any prior P. We use a
very special distribution Q:Pr(θ = θ�) = 1. Thus we can bound the expected
risk over the distribution Qnv as

L(Qnv) ≤ L̂(θ�) + 4

√
1
m

[
KL(θ� + ε‖P) + ln

(
2m
�

)]
+ δ(θ�). (A.3)

The Kullback-Leibler divergence of the two gaussians can be written as

KL(θ� + ε‖P) =
N∑

i=1

[
log

(σ

b

)
+ b2 + θ�2

i

2σ 2 − 1
2

]
, (A.4)
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where N is the number of the model weights. Finally, we have

L(Qnv) ≤ L̂(θ�) + 4

√√√√ 1
m

[
N∑

i=1

[
log

(σ

b

)
+ b2 + θ�2

i

2σ 2 − 1
2

]
+ ln

(
2m
�

)]
+ δ.

(A.5)
�

Appendix B: The Mutual-Information Generalization Bound

We formulate a mutual information theoretical foundation of (b, δ)-neural
variability, which is more related to the neuroscience mechanism of penal-
izing the information carried by nerve impulses (Stein et al., 2005).

It is known that the information in the model weights relates to overfit-
ting (Hinton & Van Camp, 1993) and flat minima (Hochreiter & Schmid-
huber, 1997). According to lemma 2, if the mutual information of the
parameters and data decreases, the upper bound of the expected general-
ization gap will also decrease.

Lemma 2 (Xu & Raginsky, 2017). Suppose L(θ, (x, y)) is the loss function of
the model M(θ ), such that L(θ, (x, y)) is σ -sub-gaussian random variable for each
θ . Let the training data set S = {(x(i), y(i) )}m

i=1 and the test sample S̄ = (x̄, ȳ) be
sampled from the data distribution S independently, and θ be the model weights
learned from the algorithm A(θ |S). Then the expected generalization gap meets the
following property:

E
[
L(θ, (x̄, ȳ)) − L(θ, S)

] ≤
√

2σ 2

m
I(θ; S),

where I(θ; S) denotes the mutual information between the parameters θ and the
training data set S.

Theorem 2. Suppose the conditions of lemma 2 hold, and the model M(θ )
achieves (b, δ)-NV on the training data set S. Then the expected generalization
gap of the model M(θ ) satisfies

E
[
L(θ + ε, (x̄, ȳ)) − L(θ, S)

] ≤
√

2σ 2

m
I(θ + ε; S) + δ,

where ε ∼ N (0, b2I) is gaussian noise, and δ only depends on the training loss
landscape.

Proof. Given the model M(θ ), we can easily obtain a new model M(θ + ε)
close to M(θ ) by injecting a gaussian noise ε ∼ N (0, b2I). By lemma 2, we
have the expected generalization gap of M(θ + ε) meets
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E

[
L(θ + ε, (x̄, ȳ)) − 1

m

m∑
i=1

L(θ + ε, (x(i), y(i) ))

]
≤

√
2σ 2

m
I(θ + ε; S). (B.1)

Based on the definition of (b, δ)-NV, we have

E

[
1
m

m∑
i=1

L(θ + ε, (x(i), y(i) )) − 1
m

m∑
i=1

L(θ, (x(i), y(i) ))

]
≤ δ. (B.2)

Thus, we obtain

E

[
L(θ + ε, (x̄, ȳ)) − 1

m

m∑
i=1

L(θ, (x(i), y(i) ))

]
≤

√
2σ 2

m
I(θ + ε; S) + δ. (B.3)

�
Obviously, the bound monotonically decreases with the variability scale

b given δ. The bound is tighter than the bound in lemma 2 when the model
has good ANV, which means b is large given a small δ. A large b can even pe-
nalize the mutual information to nearly zero. Therefore, strong ANV brings
a tighter generalization bound.

Appendix C: Implementation Details

We introduce the details of each experiment in this section. In experiment 1,
we evaluated NVRM’s robustness to weight perturbation. In experiment 2,
we evaluated the generalizability of NVRM. In experiment 3, we evaluated
NVRM’s robustness to noisy labels. In experiment 4, we evaluated NVRM’s
robustness to catastrophic forgetting. In experiment 5, we studied the use-
fulness of the de-noising step. In experiment 6, we studied choices of noise
types.

Our experiment is conducted on a computing cluster with GPUs of
NVIDIATesla V100 16 GB and CPUs of IntelXeon Gold 6140 CPU @
2.30 GHz.

C.1 Robustness, Generalization, and Label Noise.

C.1.1 General Settings. Experiments are conducted based on three pop-
ular deep learning networks VGG-16 (Simonyan & Zisserman, 2015),
MobileNetV2 (Sandler et al., 2018), and ResNet-34 (He et al., 2016). The
detailed architectures are presented in Table 1. Similarly, all data sets in-
volved in our experiments are generated based on two standard bench-
mark data sets, CIFAR-10 and CIFAR-100 (Krizhevsky & Hinton, 2009).1

1
https://www.cs.toronto.edu/kriz/cifar.html.
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Table 1: The Detailed Architectures of Models Used in the Experiments.

VGG-16 MobileNetV2 ResNet-34

conv3-64 × 2 fc-32 conv3-64

maxpool

⎡
⎣ conv1-k

conv3-k
conv1-16

⎤
⎦ × 1

[
conv3-64
conv3-64

]
× 3

conv3-128 × 2

⎡
⎣ conv1-6k

conv3-6k
conv1-24

⎤
⎦ × 2

[
conv3-128
conv3-128

]
× 4

maxpool

⎛
⎝ conv1-6k

conv3-6k
conv1-32

⎞
⎠ × 3

[
conv3-256
conv3-256

]
× 6

conv3-256 ×3

⎛
⎝ conv1-6k

conv3-6k
conv1-64

⎞
⎠ × 4

[
conv3-512
conv3-512

]
× 3

maxpool

⎡
⎣ conv1-6k

conv3-6k
conv1-96

⎤
⎦ × 3 avgpool

conv3-512 × 3

⎛
⎝ conv1-6k

conv3-6k
conv1-160

⎞
⎠ × 3

maxpool

⎡
⎣ conv1-6k

conv3-6k
conv1-320

⎤
⎦ × 1

conv3-512 × 3 fc-1280
maxpool
fc-512 × 2

fc-10 or fc-100

Notes: “conv x - c” represents a convolution layer with
kernel size x × x and c output channels, and “fc - c” repre-
sents a fully connected layer with c output channels. In the
architecture of MobileNetV2, [·] represents a bottleneck,
and (·) is simply a combination of three convolution lay-
ers but can halve both the width and height of the input of
the block. The k in [·] or (·) denotes the number of channels
of the input of the corresponding block. In the architecture
of ResNet-34, [·] represents a basic block.

We follow the official version to split training sets and test sets in our ex-
periments. For preprocessing and data augmentation, we performed per
pixel mean subtraction, horizontal random flip, and 32 × 32 random crops
after padding with four pixels on each side. The batch size is set as 128, and
the weight decay factor is set as 0.0001. We selected the optimal learning
rate from {0.0001, 0.001, 0.01, 0.1, 1, 10} and used 0.1 for SGD/NVRM-SGD.
Note that we used the common L2 regularization as weight decay, which
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is widely used in most cases, while Loshchilov and Hutter (2018) and Xie,
Sato, and Sugiyama (2020) suggested that decoupled weight decay or stable
weight decay is better in adaptive gradient methods. We employ SGD and
NVRM-SGD to train models unless we specify otherwise. For the learning
rate schedule, we initialized the learning rate as 0.1 and divided it by 10
after every 100 epochs. All models are trained for 300 epochs. The momen-
tum factor is set as 0 for VGG-16 and MobileNetV2 in experiment 1, and 0.9
for ResNet-34 in experiments 2 and 3.

C.1.2 Robustness to Weight Perturbation. For experiment 1, we injected
isotropic gaussian noise of different variances to all the model weights and
then evaluated the changes of the test accuracy. Six noise scales {0.01, 0.012,
0.014, 0.016, 0.018, 0.02} are involved in our experiments.

C.1.3 Learning with Noisy Labels. For experiment 3, we also generate a
group of data sets with label noise. The symmetric label noise is generated
by flipping every label to other labels with uniform flip rates {20%, 40%,
60%, 80%}. The asymmetric label noise by flipping label i to label i + 1 (ex-
cept that label 9 is flipped to label 0) with pair-wise flip rates {10%, 20%,
30%, 40%}. We employed the code of Han et al. (2018) for generating noisy
labels for CIFAR-10 and CIFAR-100.

C.1.4 The Usefulness of the Denoising Step and Choices of Noise Types. The
hyperparameter settings of experiments 5 and 6 follow experiment 3, which
are performed on learning with noisy labels. In experiment 6, we let the
weight noise ε, respectively, obey N (0, b2), Laplace(0, b), Uni f orm(−b, b) for
NVRM gaussian, NVRM Laplace, and NVRM uniform.

C.2 Catastrophic Forgetting.

C.2.1 Permuted MNIST. For experiment 4, we used fully connected net-
work (FCN), which has two hidden layers and 1024 ReLUs per hidden layer.
As continual learning tasks usually employ adaptive optimizers, we com-
pared Adam with NVRM-Adam on the popular benchmark task, Permuted
MNIST. In Permuted MNIST, we have five continual tasks. For each task,
we generated a fixed, random permutation by which the input pixels of
all images would be shuffled. Each task was thus of equal difficulty to the
original MNIST problem, though a different solution would be required for
each. We evaluated the accuracy of the base task (the first task) and the mean
accuracy of all learned tasks after each task.

In the EWC experiment, we try to validate if NVRM can improve EWC.
We validated the performance improvements under two different impor-
tance hyperparameters λ ∈ {30, 1000}. In experiment 4, the batch size is set
as 256, and the weight decay factor is set as 0.0001. As continual learn-
ing methods usually prefer adaptive optimizers, we employed Adam and
NVRM-Adam as the optimizers. For the learning rate schedule, we fixed

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/33/8/2163/1930889/neco_a_01403.pdf by U
N

IVER
SITY O

F SYD
N

EY user on 22 Septem
ber 2022



2184 Z. Xie et al.

the learning rate as 0.001 and applied no learning rate decay. We set the
variability scale b = 0.03 in NVRM-Adam. All models are trained for one
epoch per task, as one-epoch training has ensured good test performance
on newly learned tasks.

C.2.2 Split MNIST. For experiment 4, we also supplied the experiment
on split MNIST, another classical continual learning task. It is called in-
cremental class learning. We train the models on the samples with a spe-
cific subset of labels for five continual tasks. We followed the usual setting
(Zenke et al., 2017): y ∈ {0, 1}, y ∈ {2, 3}, y ∈ {4, 5}, y ∈ {6, 7}, and y ∈ {8, 9}
for five tasks, respectively. In each task, the model may learn only two new
digits and may forget previously learned digits.

The model is the same as the model architecture for Permuted MNIST,
except that we used the five-header output layers for five tasks, respectively.
When we trained the models for one task, the headers for other tasks were
frozen. The batch size was set as 256 and the weight decay factor as 0. Again,
we employed Adam and NVRM-Adam as the optimizers, and new optimiz-
ers are used for each continual task. For the learning rate schedule, we fixed
the learning rate as 0.001 and applied no learning rate decay. We also let the
variability scale b = 0.03 in NVRM-Adam, unless we otherwise specify it.

Appendix D: Additional Algorithm
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Figure 8: Curves of test accuracy to weight noise scale. Top: CIFAR-10; Bottom:
CIFAR-100. The three columns are VGG-16 and MobileNetV2, respectively.

Appendix E: Supplementary Experimental Results

E.1 Robustness to Weight Perturbation. See Figure 8. The empirical
results demonstrate that NVRM can also make VGG-16 and MobileNetV2
more robust to weight perturbations. We also report that, obviously, the ar-
chitecture of ResNet is much more optimal for achieving strong neural vari-
ability than VGG and MobileNet. We leave the network architecture study
as future work.

E.2 Improved Generalization. See Figure 9.

E.3 Robustness to Noisy Labels. See Figure 10. SGD almost memorizes
all corrupted labels. The results demonstrate that NVRM can also signifi-
cantly improve the robustness to symmetric label noise.
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Figure 9: Curves of generalization gap and test accuracy to epochs. NVRM with
various variability scales b can consistently improve generalization. The four
columns are, respectively, for (1) VGG-16 on CIFAR-10, (2) VGG-16 on CIFAR-
100, (3) MobileNetV2 on CIFAR-10, and (4) MobileNetV2 on CIFAR-100.

Figure 10: Curves of test accuracy to epochs of ResNet-34. The first row is on
CIFAR-10 and the second on CIFAR-100. The four columns are, respectively, for
label noise rate 20%, 40%, 60%, and 80%. NVRM with various variability scales
b can consistently relieve memorizing noisy labels.

E.4 Robustness to Catastrophic Forgetting. See Figures 11 and 12.
NVRM also enhances robustness to catastrophic forgetting in the setting of
both incremental class learning. The variability hyperparameter b of NVRM
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Figure 11: Curves of test accuracy to the number of tasks in continually learning
Permuted MNIST. The two panels are, respectively, the accuracy of the base task
and the mean accuracy of all learned tasks.

Figure 12: Curves of test accuracy to the number of tasks in continually learning
split MNIST. The two panels are, respectively, the accuracy of the base task and
the mean accuracy of all learned tasks.

is defaulted to be 0.03. The NVRM curves consistently outperform the coun-
terpart curves.

E.5 SGD with Large Gradient Noise Cannot Relieve Noise Memoriza-
tion. It is well-known that increasing the ratio of the learning rate and the
batch size η

B may enhance the scale of gradient noise in SGD and help find
flatter minima (Jastrzȩbski et al., 2017; He et al., 2019). However, our the-
oretical analysis suggests that as stochastic gradient noise carries the in-
formation about training data, there is no theoretical guarantee that large
stochastic gradient noise can work as well as NVRM. We empirically stud-
ied SGD with large stochastic gradient noise in Figure 13 and found that
SGD with various learning rates finally still memorizes noisy labels, while
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Figure 13: Curves of test accuracy to learning rates. Data set: CIAF-10 with 40%
label noise. While SGD with larger stochastic gradient noise memorizes noisy
labels more slowly, it still memorizes nearly all noisy labels in the final phase of
training. In contrast, NVRM-SGD with various learning rates can consistently
relieve overfitting noisy labels.

NVRM-SGD with various learning rates can consistently relieve overfit-
ting noisy labels. Note that in Figure 13, we initialized the learning rates
as {0.1, 0.3, 1, 3}, respectively, and divided the learning rate by 10 after ev-
ery 60 epochs.
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Jastrzȩbski, S., Kenton, Z., Arpit, D., Ballas, N., Fischer, A., Bengio, Y., & Storkey, A.

(2017). Three factors influencing minima in SGD. arXiv:1711.04623.
Kawaguchi, K., Huang, J., & Kaelbling, L. P. (2019). Effect of depth and width on

local minima in deep learning. Neural Computation, 31(7), 1462–1498.
Keskar, N. S., Mudigere, D., Nocedal, J., Smelyanskiy, M., & Tang, P. T. P. (2017). On

large-batch training for deep learning: Generalization gap and sharp minima. In
Proceedings of the International Conference on Learning Representations.

Khan, M., Nielsen, D., Tangkaratt, V., Lin, W., Gal, Y., & Srivastava, A. (2018). Fast and
scalable Bayesian deep learning by weight-perturbation in Adam. In Proceedings
of the International Conference on Machine Learning (pp. 2611–2620).

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization.
arXiv:1412.6980.

Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Desjardins, G., Rusu, A. A.,
Milan, K., . . . Hadsell, R. (2017). Overcoming catastrophic forgetting in neural
networks. In Proceedings of the National Academy of Sciences, 114(13), 3521–3526.

Kristiadi, A., Hein, M., & Hennig, P. (2020). Being Bayesian, even just a bit, fixes
overconfidence in RElU networks. In Proceedings of the International Conference on
Machine Learning (pp. 5436–5446).

Krizhevsky, A., & Hinton, G. (2009). Learning multiple layers of features from tiny im-
ages. Citeseer.

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/33/8/2163/1930889/neco_a_01403.pdf by U
N

IVER
SITY O

F SYD
N

EY user on 22 Septem
ber 2022



Artificial Neural Variability for Deep Learning 2191

LeCun, Y. (1998). The MNIST database of handwritten digits. http://yann.lecun.com/
exdb/mnist/.

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436.
Li, Y., & Liang, Y. (2018). Learning overparameterized neural networks via stochastic

gradient descent on structured data. In S. Bengio, H. Wallach, H. Larochelle, K.
Grauman, N. Cesa-Bianchi, & R. Garnett (Eds.), Advances in neural information
processing system, 31 (pp. 8157–8166). Red Hook, NY: Curran.

Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A., Ciompi, F., Ghafoorian, M.,
. . . Sánchez, C. I. (2017). A survey on deep learning in medical image analysis.
Medical Image Analysis, 42, 60–88.

Loshchilov, I., & Hutter, F. (2018). Decoupled weight decay regularization. In Pro-
ceedings of the International Conference on Learning Representations.

McAllester, D. A. (1999a). Pac-Bayesian model averaging. In Proceedings of the 12th
Annual Conference on Computational Learning Theory (pp. 164–170). New York:
ACM.

McAllester, D. A. (1999b). Some Pac-Bayesian theorems. Machine Learning, 37(3),
355–363.

McCloskey, M., & Cohen, N. J. (1989). Catastrophic interference in connectionist net-
works: The sequential learning problem. Psychology of Learning and Motivation, 24,
109–165.

Mongeon, D., Blanchet, P., & Messier, J. (2013). Impact of Parkinson’s disease and
dopaminergic medication on adaptation to explicit and implicit visuomotor per-
turbations. Brain and Cognition, 81(2), 271–282.

Neelakantan, A., Vilnis, L., Le, Q. V., Sutskever, I., Kaiser, L., Kurach, K., &
Martens, J. (2015). Adding gradient noise improves learning for very deep networks.
arXiv:1511.06807.

Nesterov, Y., & Spokoiny, V. (2017). Random gradient-free minimization of convex
functions. Foundations of Computational Mathematics, 17(2), 527–566.

Neyshabur, B., Bhojanapalli, S., McAllester, D., & Srebro, N. (2017). Exploring gen-
eralization in deep learning. In I. Guyon, Y. V. Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, & R. Garnett (Eds.), Advances in neural information
processing systems, 30 (pp. 5947–5956). Red Hook, NY: Curran

Ölveczky, B. P., Otchy, T. M., Goldberg, J. H., Aronov, D., & Fee, M. S. (2011). Changes
in the neural control of a complex motor sequence during learning. Journal of
Neurophysiology, 106(1), 386–397.

Parisi, G. I., Kemker, R., Part, J. L., Kanan, C., & Wermter, S. (2019). Continual lifelong
learning with neural networks: A review. Neural Networks, 113, 54–71.

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., & Chen, L.-C. (2018). Mo-
bilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (pp. 4510–4520). Piscataway,
NJ: IEEE.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G.,
. . . Hassabis, D. (2016). Mastering the game of go with deep neural networks and
tree search. Nature, 529(7587), 484.

Simonyan, K., & Zisserman, A. (2015). Very deep convolutional networks for large-
scale image recognition. In Proceedings of the 3rd International Conference on Learn-
ing Representations.

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/33/8/2163/1930889/neco_a_01403.pdf by U
N

IVER
SITY O

F SYD
N

EY user on 22 Septem
ber 2022

http://yann.lecun.com/exdb/mnist/


2192 Z. Xie et al.

Stein, R. B., Gossen, E. R., & Jones, K. E. (2005). Neuronal variability: Noise or part
of the signal? Nature Reviews Neuroscience, 6(5), 389–397.

Sutskever, I., Martens, J., Dahl, G., & Hinton, G. (2013). On the importance of initial-
ization and momentum in deep learning. In Proceedings of the International Confer-
ence on Machine Learning.

Tumer, E. C., & Brainard, M. S. (2007). Performance variability enables adaptive plas-
ticity of “crystallized” adult birdsong. Nature, 450(7173), 1240–1244.

Welling, M. & Teh, Y. W. (2011). Bayesian learning via stochastic gradient Langevin
dynamics. In Proceedings of the 28th International Conference on Machine Learning
(pp. 681–688).

Wen, W., Wang, Y., Yan, F., Xu, C., Wu, C., Chen, Y., & Li, H. (2018). Smoothout: Smooth-
ing out sharp minima to improve generalization in deep learning. arXiv:1805.07898.

Witten, I. H., Frank, E., Hall, M. A., & Pal, C. J. (2016). Data mining: Practical machine
learning tools and techniques. San Mateo, CA: Morgan Kaufmann.

Xie, Z., Sato, I., & Sugiyama, M. (2020). Stable weight decay regularization.
arXiv:2011.11152.

Xie, Z., Sato, I., & Sugiyama, M. (2021). A diffusion theory for deep learning dynam-
ics: Stochastic gradient descent exponentially favors flat minima. In Proceedings
of the International Conference on Learning Representations.

Xie, Z., Wang, X., Zhang, H., Sato, I., and Sugiyama, M. (2020). Adai: Separating the
effects of adaptive learning rate and momentum inertia. arXiv:2006.15815.

Xu, A., & Raginsky, M. (2017). Information-theoretic analysis of generalization capa-
bility of learning algorithms. In I. Guyon, Y. V. Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, & R. Garnett (Eds.), Advances in neural information
processing systems, 30 (pp. 2524–2533). Red Hook, NY: Curran.

Zenke, F., Poole, B., & Ganguli, S. (2017). Continual learning through synaptic intel-
ligence. In Proceedings of the 34th International Conference on Machine Learning, 70,
3987–3995.

Zhang, C., Bengio, S., Hardt, M., Recht, B., & Vinyals, O. (2017). Understanding deep
learning requires rethinking generalization. In Proceedings of the International Confer-
ence on Machine Learning.

Zhou, M., Liu, T., Li, Y., Lin, D., Zhou, E., & Zhao, T. (2019). Toward understanding
the importance of noise in training neural networks. In Proceedings of the Interna-
tional Conference on Machine Learning.

Zhu, Z., Wu, J., Yu, B., Wu, L., & Ma, J. (2019). The anisotropic noise in stochastic
gradient descent: Its behavior of escaping from sharp minima and regularization
effects. In Proceedings of the International Conference on Machine Learning (pp. 7654–
7663).

Received November 13, 2020; accepted February 22, 2021.

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/33/8/2163/1930889/neco_a_01403.pdf by U
N

IVER
SITY O

F SYD
N

EY user on 22 Septem
ber 2022


