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Abstract
Decentralized stochastic gradient descent (D-
SGD) allows collaborative learning on massive
devices simultaneously without the control of a
central server. However, existing theories claim
that decentralization invariably undermines gen-
eralization. In this paper, we challenge the con-
ventional belief and present a completely new per-
spective for understanding decentralized learning.
We prove that D-SGD implicitly minimizes the
loss function of an average-direction Sharpness-
aware minimization (SAM) algorithm under gen-
eral non-convex non-β-smooth settings. This sur-
prising asymptotic equivalence reveals an intrinsic
regularization-optimization trade-off and three ad-
vantages of decentralization: (1) there exists a free
uncertainty evaluation mechanism in D-SGD to
improve posterior estimation; (2) D-SGD exhibits
a gradient smoothing effect; and (3) the sharpness
regularization effect of D-SGD does not decrease
as total batch size increases, which justifies the
potential generalization benefit of D-SGD over
centralized SGD (C-SGD) in large-batch scenar-
ios. Experiments support our theory and the code
is available at § D-SGD and SAM.

1. Introduction
Decentralization is a promising paradigm for harnessing
the power of locally connected computing resources while
preserving privacy (Warnat-Herresthal et al., 2021; Bhatia
& Samet, 2022; Yuan et al., 2022). Decentralized stochas-
tic gradient descent (D-SGD) is a popular decentralized
algorithm which enables simultaneous model training on
a massive number of workers without the need for a cen-
tral server (Xiao & Boyd, 2004; Lopes & Sayed, 2008;
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Nedic & Ozdaglar, 2009; Lian et al., 2017; Koloskova et al.,
2020). In D-SGD, each worker communicates only with
its directly connected neighbors; see a detailed background
in Appendix A.2. This decentralization avoids the require-
ments of a costly central server with heavy communication
burdens and potential privacy risks. The existing literature
demonstrates that the massive models on edge can converge
to a unique steady consensus model even in the absence of a
central server (Shi et al., 2015; Lu et al., 2011), with asymp-
totic linear speedup in convergence rate (Lian et al., 2017)
similar to distributed centralized SGD (C-SGD) (Dean et al.,
2012; Li et al., 2014). Therefore, D-SGD offers a promis-
ing distributed learning solution with significant advantages
in communication efficiency (Ying et al., 2021b), privacy
(Nedic, 2020) and scalability (Lian et al., 2017).

Despite these merits, it is regrettable that the existing the-
ories claim decentralization to invariably undermines gen-
eralization (Sun et al., 2021; Zhu et al., 2022; Deng et al.,
2023), which contradicts the following unique phenomena
in decentralized deep learning :

• D-SGD can outperform C-SGD in large-batch set-
tings, achieving higher validation accuracy and smaller
validation-training accuracy gap, despite both being fine-
tuned (Zhang et al., 2021);

• A non-negligible consensus distance (see Equation (3)) at
middle phases of decentralized training can improve gen-
eralization over centralized training (Kong et al., 2021).

These unexplained phenomena indicates the existence of
a non-negligible gap between existing theories and deep
learning experiments, which we attribute to the overlook of
important characteristics of decentralized learning in exist-
ing literature. Accordingly, the central motivation of our
study is to thoroughly examine the unique, underexamined
characteristics of decentralized learning to bridge the gap.

Directly analyzing the dynamics of the diffusion-like de-
centralized learning systems, instead of relying on upper
bounds, can be challenging. Instead, we aim to establish
a relationship between D-SGD and other algorithms used
for centralized training. In recent years, there has been a
growing interest in techniques that aim to improve the gener-
alization of deep learning models. One of the most popular
techniques is sharpness-aware minimization (SAM) (Foret
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(a) AlexNet
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(b) ResNet-18
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(c) DenseNet-121

Figure 1. The validation accuracy comparison of C-SGD and D-SGD (ring topology) on CIFAR-10. The number of workers is set as
16, with a local batch size of 64 and 512 per worker, resulting in total batch sizes of 1024 and 8192, respectively. Validation accuracy
comparison of C-SGD and D-SGD with other topologies and on Tiny ImageNet are included in Figure B.1 and Figure B.2, respectively.
The training accuracy is almost 100% everywhere. Exponential moving average is employed to smooth the validation accuracy curves.
The training setting is included in Appendix B.

et al., 2021; Kwon et al., 2021; Zhuang et al., 2022; Du
et al., 2022; Kim et al., 2022a), which is designed to ex-
plicitly minimize a sharpness-based perturbed loss; see the
detailed background of SAM in Appendix A.3. Empirical
studies have shown that SAM substantially improves the
generalization of multiple architectures, including convolu-
tional neural networks (Wu et al., 2020; Foret et al., 2021),
vision transformers (Dosovitskiy et al., 2021) and large lan-
guage models (Bahri et al., 2022). Average-direction SAM
(Wen et al., 2023), a kind of SAM variants where sharp-
ness is calculated as the (weighted) average within a small
neighborhood around the current iterate, has been shown to
generalize on par with vanilla SAM (Ujváry et al., 2022).

In this paper, we provide a completely new perspective for
understanding decentralized learning by showing that

D-SGD and average-direction SAM are asymptotically equivalent.

Specifically, our contributions are summarized below.

• We prove that D-SGD asymptotically minimizes the loss
function of an average-direction sharpness-aware mini-
mization algorithm with zero additional computation (see
Theorem 1), which directly connects decentralized learn-
ing and centralized learning. The asymptotic equivalence
also implies a regularization-optimization trade-off in de-
centralized learning. Our theory is applicable to arbitrary
communication topologies (see Definition A.1) and gen-
eral non-convex and non-β-smooth (see Definition A.5)
objectives (e.g., deep neural networks training).

• The equivalence further reveals the potential benefits of
the decentralized learning paradigm, which challenges the
previously held belief that centralized learning is optimal.
We demonstrate three advantages of learning with decen-
tralized models based on the equivalence: (1) there exists
a surprising free uncertainty estimation mechanism in D-

SGD, where the weight diversity matrix Ξ(t) is learned
to estimate Σq, the intractable covariance of the poste-
rior;(2) D-SGD has a gradient smoothing effect, which
improves training stability (see Corollary 2); and that (3)
the sharpness regularizer of D-SGD does not decrease as
the total batch size increases (see Theorem 3), which jus-
tifies the superior generalizability of D-SGD than C-SGD,
especially in large-batch settings where gradient variance
remains low. Our empirical results also fully support our
theory (see Figure 1 and Figure 3).

To the best of our knowledge, our work is the first to es-
tablish the equivalence of D-SGD and average-direction
SAM, which constitutes a direct connection between decen-
tralized learning and centralized learning algorithms. This
breakthrough makes it easier to analyze the diffusion-like de-
centralized systems, whose exact dynamics were considered
challenging to understand. The theory further sheds light
on the potential benefits of decentralized learning paradigm.
While our theory primarily focuses on vanilla D-SGD, it can
be directly extended to general decentralized gradient-based
algorithms. We anticipate the insights derived from our
work will help bridge the decentralized learning and SAM
communities, and pave the way for the development of fast
and generalizable decentralized learning algorithms.

2. Related work
Flatness and generalization. The flatness of the minimum
has long been regarded as a proxy of generalization in the
machine learning literature (Hochreiter & Schmidhuber,
1997; Izmailov et al., 2018; Jiang et al., 2020). Intuitively,
the loss around a flat minimum varies slowly in a large
neighborhood, while a sharp minimum increases rapidly in
a small neighborhood (Hochreiter & Schmidhuber, 1997).
Through the lens of the minimum description length theory
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Figure 2. An illustration of centralized SGD and decentralized SGD. In C-SGD there is a central server aggregating global information
while D-SGD relies only on peer-to-peer communication to diffuse information among workers.

(Rissanen, 1983), flat minimizers tend to generalize better
than sharp minimizers, since they are specified with lower
precision (Keskar et al., 2017). From a Bayesian perspec-
tive, sharp minimizers have posterior distributions that are
highly concentrated around them, indicating that they are
more specialized on the training set and thus are less robust
to data perturbations than flat minimizers (MacKay, 1992;
Chaudhari et al., 2019).

Generalization of D-SGD. Recently works by Sun et al.
(2021), Zhu et al. (2022) and Deng et al. (2023) prove
that decentralization introduces an additional positive term
into the generalization error bounds, which suggests that
decentralization may hurt generalization. However, these
conservative upper bounds do not account for the unique
phenomena in decentralized learning, such as the superior
generalization performance of D-SGD in large batch set-
tings. Gurbuzbalaban et al. (2022) offers an alternative
perspective, showing that D-SGD with large, sparse topol-
ogy has a heavier tail in parameter distribution than C-SGD
in some cases, indicating better generalizability potential.
Compared with Gurbuzbalaban et al. (2022), our theory is
generally applicable to arbitrary communication topologies
and learning rates. Another work by Zhang et al. (2021)
demonstrates that decentralization introduces a landscape-
dependent noise, which may improve the convergence of
D-SGD. However, the impact of noise on the local geometry
of the D-SGD trajectory and its effect on generalization
remains unexplored. In contrast, we theoretically justify
the flatness-seeking behavior of Hessian-dependent noise
in D-SGD and then establish the asymptotic equivalence
between D-SGD and SAM. Based on the equivalence, we
prove that D-SGD has superior potential in generalizability
compared with C-SGD, especially in large-batch settings.

3. Preliminaries
Suppose that X ⊆ Rdx and Y ⊆ R are the input and
output spaces, respectively. We denote the training set as
µ = {z1, . . . , zN}, where zζ = (xζ , yζ) , ζ = 1, . . . , N are

sampled independent and identically distributed (i.i.d.) from
an unknown data distribution D defined on Z = X × Y .
The goal of supervised learning is to learn a predictor (or
hypothesis) g(w; ·), parameterized by w ∈ Rd of an arbi-
trary finite dimension d, to approximate the mapping be-
tween the input variable x ∈ X and the output variable
y ∈ Y , based on the training set µ. We define the function
c : Y × Y 7→ R+ as a function that evaluates the prediction
performance of hypothesis g. The loss of a hypothesis g
with respect to (w.r.t.) the example zζ = (xζ , yζ) is denoted
by L(w; zζ) = c(g(w;xζ), yζ), which measures the effec-
tiveness of the learned model.The empirical and population
risks of w are then defined as follows:

Lµ
w =

1

N

N∑
ζ=1

L(w; zζ), Lw = Ez∼D[L(w; z)].

Distributed learning. Distributed learning jointly trains a
model w using multiple workers (Shamir & Srebro, 2014).
In this framework, the j-th worker (j=1, . . . ,m) can access
training examples µj = {zj,1, . . . , zj,|µj |}, independent and
identically distributed (i.i.d.) drawn from the data distribu-
tion D. In this setup, the global empirical risk of w becomes

Lµ
w =

1

m

m∑
j=1

L
µj
w ,

where L
µj
w = 1

|µj |
∑|µj |

ζ=1 L(w; zj,ζ) denotes the local em-
pirical risk on the j-th worker and zj,ζ ∈ µj , where
ζ = 1, . . . , |µj |, represent the local training data.

Distributed centralized stochastic gradient descent (C-
SGD).1 In C-SGD (Dean et al., 2012; Li et al., 2014), the

1“Centralized” refers to the fact that in C-SGD, there is a central
server receiving local weights or gradients information (see Fig-
ure 2). C-SGD defined above is identical to the FedAvg algorithm
(McMahan et al., 2017) under the condition that the local step is set
as 1 and all local workers are selected by the server in each round
(see Appendix A.1). To avoid misunderstandings, we include the
term “distributed” in C-SGD to differentiate it from traditional
single-worker SGD (Cauchy et al., 1847; Robbins, 1951).
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de facto distributed training algorithm, there is only one
centralized model wa(t). C-SGD updates the model by

wa(t+1) = wa(t) − η · 1

m

m∑
j=1

Local gradient computation︷ ︸︸ ︷
∇Lµj(t)(wa(t)) , (1)

where η denotes the learning rate (step size), µj(t) =
{zj,1, . . . , zj,|µj(t)|} denotes the local training batch inde-
pendent and identically distributed (i.i.d.) drawn from the
data distribution D at the t-th iteration, and ∇L

µj(t)
w =

∇Lµj(t)(w) = 1
|µj(t)|

∑|µj(t)|
ζ(t)=1 ∇L(w; zj,ζ(t)) stacks for

the local mini-batch gradient of L w.r.t. the first argument
w. The total batch size of C-SGD at the t-th iteration is
|µ(t)| =

∑m
j=1 |µj(t)|. Please refer to Appendix A.1 for

more details of (distributed) centralized learning. In the
next section, we will show that C-SGD equals the single-
worker SGD with a larger batch size.

Decentralized stochastic gradient descent (D-SGD). In
model decentralization scenarios, only peer-to-peer com-
munication is allowed. The goal of D-SGD in the setup is
to learn a consensus model wa(t) =

1
m

∑m
j=1 wj(t) on m

workers through gossip communication, where wj(t) stands
for the d-dimensional local model on the j-th worker. We
denote P = [Pj,k] ∈ Rm×m as a doubly stochastic gossip
matrix (see Definition A.1) that characterizes the underlying
topology G. The vanilla Adapt-While-Communicate (AWC)
version of the mini-batch D-SGD (Nedic & Ozdaglar, 2009;
Lian et al., 2017) updates the model on the j-th worker by

wj(t+1) =

Communication︷ ︸︸ ︷
m∑

k=1

Pj,kwk(t)−η ·

Local gradient computation︷ ︸︸ ︷
∇Lµj(t)(wj(t)) . (2)

For a more detailed background of decentralized learning,
please kindly refer to Appendix A.2.

4. Theoretical results
In this section, we establish the equivalence between D-
SGD and average-direction SAM under general non-convex
and non-β-smooth objectives L. We also provide a proof
sketch to offer a more intuitive understanding. The equiva-
lence further showcases the potential superiority of learning
with decentralized models. Specifically, we prove that the
additional noise introduced by decentralization leads to a
gradient smoothing effect, which could stabilize optimiza-
tion. Additionally, we show that the sharpness regularizer in
D-SGD does not decrease as the total batch size increases,
which guarantees generalizability in large-batch settings.

4.1. Equivalences of Decentralized SGD and
average-direction SAM

In this subsection, we prove that D-SGD implicitly performs
average-direction sharpness-aware minimization (SAM),
followed by detailed implications.
Theorem 1 (D-SGD as SAM). Given the loss L is contin-
uous and has fourth-order partial derivatives. The mean
iterate2 of the global averaged model of D-SGD3, defined
by wa(t) =

1
m

∑m
j=1 wj(t), is provided as follows:

Eµ(t)[wa(t+1)]

=wa(t) − η Eϵ∼N (0,Ξ(t))[∇Lwa(t)+ϵ]︸ ︷︷ ︸
asymptotic descent direction

+O(η Eϵ∼N (0,Ξ(t))∥ϵ∥32+
η

m

m∑
j=1

∥wj(t)−wa(t)∥32)︸ ︷︷ ︸
higher-order residual terms

,

where Ξ(t) = 1
m

∑m
j=1(wj(t)−wa(t))(wj(t)−wa(t))

⊤ ∈
Rd×d denotes the weight diversity matrix.

The proof is deferred to Appendix C.2.

Asymptotic equivalence. According to Proposition C.3, the
highlighted term Eϵ∼N (0,Ξ(t))[∇Lwa(t)+ϵ] is of the order
O( 1

m

∑m
j=1 ∥wj(t)−wa(t)∥22) while the residual terms are

of the higher-order O( 1
m

∑m
j=1 ∥wj(t)−wa(t)∥32). There-

fore, Eϵ∼N (0,Ξ(t))[∇Lwa(t)+ϵ] gradually dominates the op-
timization direction as the local models are near consensus
(i.e., wj(t)→wa(t),∀j) and the descent direction of D-SGD
asymptotically approaches Eϵ∼N (0,Ξ(t))[∇Lw+ϵ]. See the
introduction of the asymptotic equivalence in Definition C.1.

Sharpness regularization. According to Theorem 1, D-
SGD asymptotically optimizes Eϵ∼N (0,Ξ(t))[Lw+ϵ], an av-
eraged perturbed loss in a “basin” around w, rather than
the original point-loss. To further clarify, we can split “true
objective” of D-SGD near consensus into the original loss
plus an average-direction sharpness:

Eµ(t)[L
D-SGD
w ] ≈ Lw︸︷︷︸

original loss

+ Eϵ∼N (0,Ξ(t))[Lw+ϵ −Lw]︸ ︷︷ ︸
sharpness-aware regularizer

.

The second term Eϵ∼N (0,Ξ(t))[Lw+ϵ − Lw] measures the
weighted average sharpness at w, which is a special form

2The expectation of the super batch µ(t) is computed by tak-
ing the expectations over all local mini-batches µj (t) for all
j=1, . . . ,m, which eliminates the randomness of all training data
at t-th iteration, represented by zj,ζ(t) for all ζ(t)=1, . . . , |µj(t)|
and j=1, . . . ,m.

3In D-SGD (see Equation (2)), the “virtual” global averaged
model wa(t) = 1

m

∑m
j=1 wj(t) is primarily employed for theoret-

ical analysis, since there is no central server to aggregate the in-
formation from local workers. However, analyzing wa(t) remains
practical as it characterizes the overall performance of D-SGD.
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of the average-direction sharpness (Wen et al., 2023). Theo-
rem 1 proves that D-SGD minimizes the loss function of an
average-direction SAM asymptotically4, which provides a
direct connection between decentralized learning and cen-
tralized learning. As Theorem 1 only assumes L to be
continuous and fourth-order differentiable, the result is gen-
erally applicable to non-convex non-β-smooth problems,
including deep neural networks training.

We note that the sharpness regularizer in D-SGD is directly
controlled by Ξ(t), whose magnitude can be measured by
the consensus distance, a key component characterizing the
overall convergence of D-SGD (Kong et al., 2021),

Tr (Ξ(t)) =
1

m

m∑
j=1

(wj(t)−wa(t))
⊤(wj(t)−wa(t)). (3)

Theorem 1 provides a theoretical explanation for the phe-
nomena observed in (Kong et al., 2021): (1) Controlling
consensus distance below a threshold in the initial training
phases makes the SAM-type term quickly dominates the
residual terms, thus ensuring good optimization; (2) Sustain-
ing a non-negligible consensus distance at the middle phases
maintains the sharpness regularization effect and therefore
improves generalization over centralized training.

The implicit regularization effect in D-SGD shares similar
insights with interesting studies on local SGD and federated
learning, revealing that global coherence is not always opti-
mal and a certain degree of drift in clients could be benign
(Gu et al., 2023; Chor et al., 2023). Specifically, Gu et al.
(2023) proves that the dissimilarity between local models
induces a gradient noise, which drives the iterate to drift
faster to flatter minima. Despite the shared characteristics,
the consensus distance in decentralized learning is notably
unique. The magnitude of the consensus distance exhibits
dynamic adjustments. Proposition C.2 shows that if the
learning rate is smaller than a certain threshold, then the
consensus distance gradually decreases during training, in-
dicating that the “searching space” of ϵ is relatively large
in the initial training phase and then gradually declines. In
addition, as shown in Proposition C.1, a small spectral gap
(see Definition A.2) of the underlying communication topol-
ogy (see Figure 2) leads to larger consensus distance, the
magnitude of perturbation radius. According to (Foret et al.,
2021), a large perturbation radius ensures a lower general-
ization upper bound. However, the validation performance
of D-SGD is not always satisfactory on large and sparse
topologies with a small spectral gap (Kong et al., 2021),
as there is regularization-optimization trade-off in D-SGD
(please refer to the discussion in Section 6).

4The generalization benefit of optimizing average-direction
sharpness is discussed in Theorem C.6. This work reveals the
sharpness regularization effect of D-SGD in one-step. We leave
the study of the multi-step dynamics of D-SGD to future work.

Variational interpretation of D-SGD. In the variational
formulation (Zellner, 1988), minw Eϵ∼N (0,Ξ(t))[Lw+ϵ] is
referred to as the variational optimization (Rockafellar &
Wets, 2009). Theorem 1 shows that D-SGD not only opti-
mizes Eϵ∼N (0,Ξ(t)) with respect to w, but also inherently
estimates uncertainty for free: The weight diversity matrix
Ξ(t) (i.e., the empirical covariance matrix of wj(t)) implic-
itly estimate Σq , the intractable posterior covariance,

Ξ(t) =
1

m

m∑
j=1

(wj(t)−wa(t))(wj(t)−wa(t))
⊤ ≈ Σq.

Note that Ξ(t) is learned along with the update of local mod-
els without any additional computational budget. The free
uncertainty estimation mechanism indicates the uniqueness
of the noise from decentralization, which depends both on
the local loss landscape and the posterior distribution.

Comparison of D-SGD and vanilla SAM. The loss func-
tion of vanilla SAM (Foret et al., 2021) can be written in
the following form:

LSAM(w,Σ)= max
ϵ∈Rd|ϵTΣ−1ϵ≤d

[L(w+ϵ)−L(w)]+L(w),

where the covariance matrix Σ is set as ρ2

d I , with ρ being
the perturbation radius and I representing the identity ma-
trix. Interestingly, ρ in SAM plays a similar role as Ξ(t) in
D-SGD. However, in the SAM that D-SGD approximates,
the covariance matrix Ξ(t) is learned adaptive during train-
ing. Moreover, the iterate of D-SGD involves higher-order
residuals, whereas vanilla SAM does not. The third differ-
ence is that vanilla SAM minimizes a worst-case sharpness
maxϵTΣ−1ϵ≤d L(w+ϵ) while D-SGD implicitly minimizes
an average-direction sharpness (or a Bayes loss). However,
the loss of vanilla SAM always upper bounds the Bayes
loss (Möllenhoff & Khan, 2023), and they are close to each
other in high dimensions where samples from N (w,Σ)
concentrate around the ellipsoid (w− ϵ)⊤Σ−1(w− ϵ) = d
(Vershynin, 2018). In addition, the sharpness regulariza-
tion effect of D-SGD incurs zero additional computational
overhead compared to SAM, which requires performing
backpropagation twice at each iteration.

Comparison with related works. Initial efforts have
viewed D-SGD as a centralized algorithm penalizing the
weight norm ∥P− 1

2W∥2I−P, a quantity similar to the con-
sensus distance, where W = [w1, · · · ,wm]T ∈ Rm×d

collects m local models (Yuan et al., 2021; Gurbuzbalaban
et al., 2022). However, little effort has been made so far to
analyze the “interplay” between weight diversity measures,
such as the consensus distance, and the local geometry of
the D-SGD iterate. Our work fills this gap by showing the
flatness-seeking behavior of the Hessian-consensus depen-
dent noise in D-SGD and then exhibiting the asymptotic
equivalence between D-SGD and SAM.
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4.2. Proof sketch and idea

To impart a stronger intuition, we summarize the proof
sketch of Theorem 1 and explain the motivation behind our
proof idea. Full proof is deferred to Appendix C.

(1) Derive the iterate of the averaged model wa(t).

Directly analyzing the dynamics of the diffusion-like de-
centralized systems where information is gradually spread
across the network is non-trivial. Instead, we focus on
wa(t) =

1
m

∑m
j=1 wj(t), the global averaged model of D-

SGD, whose update can be written as follows,

wa(t+1)

=wa(t)−η
[
∇Lµ(t)

wa(t)
+

1

m

m∑
j=1

(∇L
µj(t)

wj(t)
−∇L

µj(t)

wa(t)
)︸ ︷︷ ︸

gradient diversity among local workers

]
, (4)

as 1
m

∑m
j=1

∑m
k=1 Pj,kwk(t)=

1
m

∑m
k=1 wk(t)=wa(t).

Equation (4) shows that decentralization introduces an ad-
ditional noise, which characterizes the gradient diversity5

between the global averaged model wa(t) and the local
models wj(t) for j=1, . . . ,m, compared with its centralized
counterpart. Therefore, we note that

analyzing the gradient diversity is the major challenge
of decentralized (gradient-based) learning.

One can deduce directly from Equation (4) that distributed
centralized SGD, which has constant zero gradient diversity,
is equivalent to standard single-worker mini-batch SGD
with an equivalently large batch size.

Insight. We also note that the gradient diversity equals
to zero on quadratic objective L (see Proposition C.4).
Therefore, the quadratic approximation of loss functions
L (Zhu et al., 2019b; Ibayashi & Imaizumi, 2021; Liu
et al., 2021; 2022c) is insufficient to characterize how de-
centralization impacts the training dynamics of D-SGD, es-
pecially on neural network loss landscapes where quadratic
approximation may not be accurate even around minima
(Ma et al., 2022). To better understand the dynamics of
D-SGD on complex landscapes, it is crucial to consider
higher-order geometric information of objective L. In the

following, we approximate the gradient diversity using Tay-
lor expansion, instead of analyzing it on non-convex non-β-
smooth loss L directly, which is highly non-trivial.

(2) Perform Taylor expansion on the gradient diversity.
5We note that the concept of gradient diversity is distinct from

that in (Yin et al., 2018), as it quantifies the variation of the gra-
dients of one single model on different data points. The gradient
diversity in our paper shares similarities with the gradient bias of
local workers in federated learning (FL) literature (Wang et al.,
2020; Reddi et al., 2021; Wang et al., 2022).

Technically, we perform a second-order Taylor expansion
on the gradient diversity around wa(t):

1

m

m∑
j=1

(∇L
µj(t)

wj(t)
−∇L

µj(t)

wa(t)
)=

1

m

m∑
j=1

H
µj(t)

wa(t)
·(wj(t)−wa(t))

+
1

2m

m∑
j=1

T
µj(t)

wa(t)
⊗ [(wj(t)−wa(t))(wj(t)−wa(t))

⊤],

plus residual terms O( 1
m

∑m
j=1 ∥wj(t)−wa(t)∥32). Here

H
µj(t)

wa(t)
≜ 1

|µj(t)|
∑|µj(t)|

ζ(t)=1 H(wa(t); zj,ζ(t)) denotes the em-

pirical Hessian matrix evaluated at wa(t) and T
µj(t)

wa(t) ≜
1

|µj(t)|
∑|µj(t)|

ζ(t)=1 T (wa(t); zj,ζ(t)) stacks for the empirical
third-order partial derivative tensor at wa(t), where µj(t)

and zj,ζ(t) follows the notation in Equation (1).

As wa(t) and local models wj(t) (j=1, . . . ,m) are only
correlated with the super batch before the t-th iteration (see
Equation (2)), taking expectation over µ(t) provides

Eµ(t)

[ 1
m

m∑
j=1

(∇L
µj(t)

wj(t)
−∇L

µj(t)

wa(t)
)
]

=Hwa(t) ·
1

m

m∑
j=1

(wj(t)−wa(t))︸ ︷︷ ︸
=0

+
1

2
Twa(t) ⊗

[ 1
m

m∑
j=1

(wj(t)−wa(t))(wj(t)−wa(t))
⊤],

plus residual terms O( 1
m

∑m
j=1 ∥wj(t)−wa(t)∥32), where

Hwa(t)=Eµj(t)
[H

µj(t)

wa(t)
] and Twa(t)=Eµj(t)

[T
µj(t)

wa(t)
].

The i-th entry of the expected gradient diversity becomes:

Eµ(t)

[ 1
m

m∑
j=1

(∂iL
µj(t)

wj(t)
−∂iL

µj(t)

wa(t)
)
]

=
1

2

∑
l,s

∂3
ilsLwa(t)

1

m

m∑
j=1

(wj(t)−wa(t))l(wj(t)−wa(t))s︸ ︷︷ ︸
=∂i

∑
ls ∂2

lsLwa(t)[
1
m

∑m
j=1 (wj(t)−wa(t))l(wj(t)−wa(t))s]

+O(
1

m

m∑
j=1

∥wj(t)−wa(t)∥32), (5)

where (wj(t)−wa(t))l denotes the l-th entry of the vector
wj(t)−wa(t). The equality in the brace is due to Clairaut’s
theorem (Rudin et al., 1976). The right hand side (RHS) of
this equality is the i-th partial derivative of

Tr(∇2Lwa(t)Ξ(t))

= Tr(∇2Lwa(t)Eϵ∼N (0,Ξ(t))[ϵϵ
T ])

= Eϵ∼N (0,Ξ(t))[ϵ
T∇2Lwa(t)ϵ]
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= Eϵ∼N (0,Ξ(t))[2(Lwa(t)+ϵ−Lwa(t))︸ ︷︷ ︸
average-direction sharpness at wa(t)

+O(∥ϵ∥32)], (6)

where Ξ(t)= 1
m

∑m
j=1(wj(t)−wa(t))(wj(t)−wa(t))

T .

Proof complete by combining Equation (4) and Equation (6).

The proof sketch outlines the high-level intuition of the
flatness-seeking behavior of D-SGD.

High-level intuition: Model decentralization introduces
gradient diversity among local models (see Equation (4)),
which induces a unique Hessian-consensus dependent
noise. This noise directs the optimization trajectory of
D-SGD towards regions with lower average-direction
sharpness Eϵ∼N (0,Ξ(t))[Lw+ϵ−Lw].

4.3. Gradient smoothing effect of decentralization

Previous literature has shown the gradient stabilization ef-
fect of isotropic Gaussian noise injection (Bisla et al., 2022;
Liu et al., 2022b). According to Theorem 1, decentraliza-
tion can be interpreted as the injection of Gaussian noise
into gradient. There arises a natural question that whether
or not the noise introduced from decentralization, which is
not necessarily isotropic, would smooth the gradient. We
employ the following Corollary to answer this question.
Corollary 2 (Gradient smoothing effect of D-SGD). Given
that vanilla loss function Lw is α-Lipschitz continuous
and the gradient ∇Lw is β-Lipschitz continuous. We con-
clude that the gradient ∇Lw+ϵ where ϵ ∼ N (0,Ξ(t)) is

min
{√

2α
σmin

, β
}

-Lipschitz continuous, where σmin denotes
the smallest eigenvalue of Ξ(t).

Corollary 2 implies that if the lower bound of noise mag-
nitude satisfies σmin ≥

√
2α
β , then the noise ϵ can make the

Lipschitz constant of gradients smaller, therefore leading
to gradient smoothing. The gradient smoothing effect ex-
hibited by D-SGD aligns with two empirical observations
in large-batch settings: (1) the training curves of D-SGD
are notably more stable than those of C-SGD, and (2) D-
SGD can converge with larger learning rates, as reported in
(Zhang et al., 2021). The proof is deferred to Appendix C.3.
Further research directions include dynamical stability anal-
ysis (Kim et al., 2023; Wu & Su, 2023) of D-SGD.

4.4. Generalization benefit of D-SGD: the role of total
batch size

In practice, data and model decentralization ordinarily im-
ply large total batch sizes, as a massive number of work-
ers are involved in the system in many practical scenarios.
Large-batch training can enhance the utilization of super
computing facilities and further speed up the entire training

process. Thus, studying the large-batch setting is crucial for
fully understanding the application of D-SGD.

Despite the importance, theoretical understanding of the gen-
eralization of large-batch6 decentralized training remains an
open problem. This subsection examines the implicit regu-
larization of D-SGD with respect to (w.r.t.) total batch size
|µ|, and compares it to C-SGD. To investigate the impact of
|µ|, we analyze the effect of the gradient variance, in addi-
tion to the gradient expectation studied in Subsection 4.1.

Theorem 3. Let B = |µ| denote the total batch size. With a
probability greater than 1−O( B

(N−B)η2 ), D-SGD implicit
minimizes the following objective function:

LD-SGD
w =Lµ

w+Tr(Hµ
wΞ(t))+

η

4
Tr((Hµ

w)
2
Ξ(t))︸ ︷︷ ︸

batch size independent sharpness regularizer

+ κ · 1

N

N∑
j=1

[
∥∇Lj

w−∇Lµ
w∥22+Tr((Hj

w−Hµ
w)

2
Ξ(t))

]
︸ ︷︷ ︸

batch size dependent variance regularizer

+
η

4
∥∇Lµ

w∥22+RA+O(η2),

where κ = η
B · N−B

(N−1)
, and RA absorbs all higher-order

residuals. The empirical loss and the gradient on the super-
batch µ, denoted by Lµ

w and ∇Lµ
w, respectively, are aver-

aged over the one-sample gradients ∇Lj
w. Similarly, the

empirical Hessian Hµ
w is an average of Hj

w = H(w; zj).

A corresponding implicit regularization of C-SGD (and
SGD) is established in Lemma C.8, which demonstrates that
C-SGD has an implicit gradient variance reduction mecha-
nism to improve generalization (see Figure C.1). However,
as the total batch size B approaches the total training sample
size N , the regularization term diminishes rapidly, even in
the case when the learning rate scales with the total batch
size, since the ratio κ = N−B

N−1 converges to 0 gradually.

On the contrary, Theorem 3 proves that the sharpness reg-
ularization terms in D-SGD do not decrease as the total
batch size increases, unlike in C-SGD, which theoretically
justifies the potential superior generalizability of D-SGD in
large-batch settings. The underlying intuition is that decen-
tralization introduces additional noise, which compensates
for the noise required for D-SGD to generalize well in large-
batch scenarios. The proof is included in Appendix C.5.

5. Empirial results
This section empirically validates our theory 7. We introduce
the experimental setup and then study how decentralization

6Please refer to Appendix A.4 for the detailed discussion on
the generalization of large-batch training.

7Code is available at § D-SGD and SAM.
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(f) D-SGD, 8192 total batch size

Figure 3. Minima 3D visualization of ResNet-18 trained on CIFAR-10 using C-SGD and D-SGD (ring topology).

impacts minima flatness via local landscape visualization.

Dataset and architecture. Decentralized learning is sim-
ulated in a dataset-centric setup by uniformly partitioning
data among multiple workers (GPUs) to accelerate the train-
ing process. Vanilla D-SGD with various commonly used
topologies8 (see Figure 2) and C-SGD are employed to
train image classifiers on CIFAR-10 (Krizhevsky et al.,
2009) and Tiny ImageNet (Le & Yang, 2015) with AlexNet
(Krizhevsky et al., 2017), ResNet-18 (He et al., 2016b) and
DenseNet-1219 (Huang et al., 2017). Detailed implementa-
tion setting is inclued in Appendix B.

As demonstrated in Figure 1, Figure B.1 and Figure B.2,

8On CIFAR-10, we use deterministic topology. On Tiny Ima-
geNet, we use deterministic topology with random neighbor shuf-
fling, which can increase the effective spectral gap of the under-
lying communication matrix (Zhang et al., 2020). We adjust the
effective spectral gap by introducing random shuffle to accommo-
date the “optimal temperature” of models on different datasets.

9In our experiments, the ImageNet pre-trained models are used
as initializations to achieve better final validation performance.
The conclusions still stand for training from scratch.

D-SGD consistently outperforms C-SGD in terms of gen-
eralizability in large-batch settings10. We also note that
the gap in generalizability between D-SGD and C-SGD in
a large-batch scenario is larger on the CIFAR-10 dataset,
which we attribute to the smaller κ value (see Theorem 3).
To further support our claim that D-SGD favors flatter min-
ima than C-SGD in large-batch scenarios, we plotted the
minima learned by both algorithms using the local loss land-
scape 3D visualization tool in Li et al. (2018). The resulting
plots are shown in Figure 3, along with additional plots
in Appendix B. These plots demonstrate that D-SGD con-
sistently learns flatter minima than C-SGD in large-batch
settings, and this difference in flatness becomes larger as the
total batch size increases. These observations are consistent
with the claims made in Theorem 1 and Theorem 3 that
D-SGD favors flatter minima than its centralized counter-
part, especially in the large-batch scenarios. Future work
includes visualizing the whole trajectories of D-SGD.

10This is due to the fact that the training accuracy of D-SGD is
almost surely 100% in all settings, making validation accuracy a
reliable measure of generalizability.
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6. Discussion and Broader Impact
Question 1: How to scale learning rate w.r.t. batch size
and spectral gap in decentralized deep learning?

As proved in Theorem 1, the training dynamics of D-SGD
and C-SGD are completely different. There also exists po-
tential landscape smoothing and generalization promoting
effect of D-SGD (Theorem C.6 and Theorem 3). Conse-
quently, we conjecture that D-SGD could be more “tolera-
ble” to hyperparameters such as learning rate than C-SGD.
However, the existing tricks for hyperparameter tuning are
tailored for C-SGD (e.g., linear scaling rule). A natural
question is that can we design a general scaling strategy of
learning rate as a function of batch size and the spectral gap
of the underlying communication topology, in order to main
generalizability of D-SGD in large-batch settings?

Question 2: Would continuously reducing spectral gap
improve the validation performance of D-SGD?

The answer is negative, as D-SGD inherently exhibits a
regularization-optimization trade-off. On the one hand, a
sparse topology11 with a too-small spectral gap leads to large
consensus distance (see proof in Proposition C.1), which
also slows down the converges of the higher-order resid-
ual terms, and consequently, hampers the optimization of
the original objective. On the other hand, although a small
spectral gap increases the sharpness regularization effect,
it also makes the optimization of Eϵ∼N (0,Ξ(t))[∇Lwa(t)+ϵ]
difficult. In SAM, a too large perturbation radius (or neigh-
borhood size) ρ incurs divergence (Andriushchenko & Flam-
marion, 2022; Mueller & Hein, 2022). Similarly, a topology
with a small spectral gap leads to a large Tr (Ξ(t)), the
magnitude of the variance of ϵ. A large Tr (Ξ(t)) results
in an increased search space for the optimization problem
minw Eϵ∼N (0,Ξ(t))[Lw+ϵ −Lw], making it more difficult
to solve. These intuitions align with the observation that the
D-SGD converges slowly on sparse topologies (Lian et al.,
2017; Koloskova et al., 2020). Based on the analysis, we
conjecture that there exists “sweet spots”, which balance
the sharpness regularization introduced by proper decentral-
ization and the optimization issues originated from sparse
topologies. Finding these “sweet spots” then becomes a
promising direction in a decentralized deep learning.

Future work 1: Fine-grained convergence and general-
ization analyses of decentralized learning algorithms.

We have demonstrated several potential benefits of D-SGD
based on the established equivalence. Another direct ex-
tension of our work is to utilize the connection between
decentralized learning and centralized learning to improve

11A sparse topology refers to the topology whose neighbor num-
ber is relatively smaller than the total number of workers. A sparse
topology always has a small spectral gap (see Definition A.2)

the existing convergence and generalization bounds of de-
centralized learning algorithms.

Future work 2: Provide adversarial robustness guaran-
tees for decentralized learning algorithms.

Cao et al. (2023) find that decentralized stochastic gradient
algorithms are more adversarial robust than their centralized
counterpart in certain scenarios. They boldly conjecture
that the superiority could be attributed to their inclination
towards flatter minimizers. The question is can we provide
rigorous adversarial robustness guarantees of decentralized
learning algorithms, and develop more robust algorithms?

Future work 3: Bridge decentralized learning and SAM.

An interesting question arising from the asymptotic equiv-
alence is that does D-SGD share the properties of SAM,
beyond generalizablity, including better interpretability (An-
driushchenko et al., 2023) and transferability (Chen et al.,
2022)? Furthermore, it is worth exploring whether the in-
sights gained from SAM (Andriushchenko & Flammarion,
2022; Möllenhoff & Khan, 2023; Wen et al., 2023) can be
utilized to design more effective decentralized algorithms.

7. Conclusion
This paper challenges the conventional belief that cen-
tralized learning is optimal and establishes the surprising
asymptotic equivalence of decentralized SGD and average-
direction SAM. This asymptotic equivalence further demon-
strates a regularization-optimization trade-off and three ad-
vantages of D-SGD: (1) there exists a surprising free un-
certainty estimation mechanism in D-SGD to estimate the
intractable posterior covariance;(2) D-SGD has a gradient
smoothing effect; and (3) the sharpness regularization effect
of D-SGD does not decrease as total batch size increases,
which justifies the superior generalizablity of D-SGD over
centralized SGD (C-SGD) in large-batch settings. Although
our theory focuses primarily on the vanilla decentralized
SGD, we believe our theoretical insights are applicable to a
broad range of decentralized gradient-based algorithms.
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Möllenhoff, T. and Khan, M. E. SAM as an optimal relax-
ation of bayes. In The Eleventh International Conference
on Learning Representations, 2023.

Nadiradze, G., Sabour, A., Davies, P., Li, S., and Alistarh, D.
Asynchronous decentralized sgd with quantized and local
updates. Advances in Neural Information Processing
Systems, 2021.

Narayanan, D., Shoeybi, M., Casper, J., LeGresley, P., Pat-
wary, M., Korthikanti, V., Vainbrand, D., Kashinkunti, P.,
Bernauer, J., Catanzaro, B., et al. Efficient large-scale
language model training on gpu clusters using megatron-
lm. In Proceedings of the International Conference for
High Performance Computing, Networking, Storage and
Analysis, pp. 1–15, 2021.

Nedic, A. Distributed gradient methods for convex machine
learning problems in networks: Distributed optimization.
IEEE Signal Processing Magazine, 2020.
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A. Background
A.1. Distributed centralized learning (data decentralization)

Efficiently training large-scale models on massive amounts of data is challenging yet important for real-world applications
(Narayanan et al., 2021; Shen et al., 2023). To handle an increasing amount of data and parameters, distributed learning on
multiple workers emerges. Traditional distributed learning systems usually follow a centralized setup (parameter server).

Distributed centralized stochastic gradient descent (C-SGD). In C-SGD (Dean et al., 2012; Li et al., 2014), the de facto
distributed training algorithm, there is only one centralized model wa(t). C-SGD updates the model by

wa(t+1) = wa(t) − η · 1

m

m∑
j=1

Local gradient computation︷ ︸︸ ︷
∇Lµj(t)(wa(t)) , (A.1)

where η is the learning rate, µj(t) = {zj,1, . . . , zj,|µj(t)|} denotes the local training batch independent and identi-

cally distributed (i.i.d.) drawn from the data distribution D at the t-th iteration, and ∇L
µj(t)
w = ∇Lµj(t)(w) =

1
|µj(t)|

∑|µj(t)|
ζ(t)=1 ∇L(w; zj,ζ(t)) stacks for the local mini-batch gradient of L w.r.t. the first argument w. The total batch size

of C-SGD at t-th iteration is |µ(t)| =
∑m

j=1 |µj(t)|.

“Centralized” refers to the fact that in C-SGD, there is a central server receiving weight or gradient information from local
workers (see Figure 2). To clarify, the process of updating the global model with the globally averaged gradients, as shown
in equation A.1, is equivalent to averaging the local weights after performing local gradient updates on the global model:

wj(t+1) = wj(t) − η · ∇Lµj(t)(wa(t)), wa(t+1) =
1

m

m∑
j=1

wj(t+1),

⇒wa(t+1) = wa(t) − η · 1

m

m∑
j=1

Local gradient computation︷ ︸︸ ︷
∇Lµj(t)(wa(t)) . (A.2)

C-SGD defined in Equation (A.1) and Equation (A.2) are mathematically identical to the Federated Averaging algorithm
(McMahan et al., 2017) under the condition that the local step is set as 1 and all local workers are selected by the server in
each round. To avoid misunderstandings, we include the term “distributed” in C-SGD to differentiate it from traditional
single-worker SGD (Cauchy et al., 1847; Robbins, 1951).

A.2. Decentralized learning (data and model decentralization)

Limitations of server-based learning. Despite convenience and scalability, central server-based learning scheme suffers
from two main issues: (1) a centralized communication protocol slows down training since central servers are easily
overloaded, especially in low-bandwidth or high-latency cases (Lian et al., 2017); (2) there exists a potential information
leakage through privacy attacks on the gradients transmitted to central server despite decentralizing data using Federated
Learning (Zhu et al., 2019a; Geiping et al., 2020; Yin et al., 2021; Wang et al., 2023). As an alternative, decentralized
learning (machine learning in a peer-to-peer architecture) allows workers to balance the load on the central server (Lian
et al., 2017), as well as maintain confidentiality (Warnat-Herresthal et al., 2021).

Development of decentralized algorithms. The earliest work of classical decentralized optimization can be traced back
to Tsitsiklis (1984), Tsitsiklis et al. (1986) and Nedic & Ozdaglar (2009). Decentralized SGD, a direct combination of
decentralization and gradient-based optimization, has been extended to various contexts, including time-varying topologies
(Nedić & Olshevsky, 2014; Lu & Wu, 2020; Koloskova et al., 2020; Ying et al., 2021a), directed topologies (Assran et al.,
2019; Taheri et al., 2020; Song et al., 2022), asynchronous settings (Lian et al., 2018; Xu et al., 2021; Nadiradze et al.,
2021; Bornstein et al., 2023), data-heterogeneous scenarios (Tang et al., 2018; Vogels et al., 2021; Le Bars et al., 2023) and
Byzantine-robust versions (Yang et al., 2020; Farhadkhani et al., 2023). Although our theory focuses primarily on the vanilla
decentralized SGD, we anticipate our theoretical insights will be applicable to a broad range of decentralized algorithms.

We then summarize some commonly used notions regarding decentralized learning in the following.

Definition A.1 (Doubly Stochastic Matrix). Let G = (V, E) stand for the decentralized communication topology, where V
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denotes the set of m computational nodes and E represents the edge set. For any given topology G = (V, E), the doubly
stochastic gossip matrix P = [Pj,k] ∈ Rm×m is defined on the edge set E that satisfies

• P = P⊤ (symmetric);

• If j ̸= k and (j, k) /∈ E , then Pj,k = 0 (disconnected) and otherwise, Pj,k > 0 (connected);

• Pj,k ∈ [0, 1] ∀k, l and
∑

k Pj,k =
∑

l Pj,k = 1 (standard weight matrix for undirected graph).

The doubly stochasticity of the gossip matrices is a standard assumption of decentralized learning (Lian et al., 2017;
Koloskova et al., 2020). It is worth noticing that our theory is generally applicable to arbitrary communication topologies
whose gossip matrices are doubly stochastic.

In the following we illustrate some commonly-used communication topologies.

Figure A.1. An illustration of some commonly used topologies.

The intensity of gossip communications is measured by the spectral gap (Seneta, 2006) of P.

Definition A.2 (Spectral Gap). Denote λ = max {|λ2| , |λm|} where λi (i = 2, . . . ,m) is the i-th largest eigenvalue of
gossip matrix P ∈ Rm×m. The spectral gap of a gossip matrix P can be defined as follows:

spectral gap := 1− λ.

According to the definition of doubly stochastic matrix (Definition A.1), we have 0 ≤ λ < 1. The spectral gap measures
the connectivity of the communication topology. A topology is considered sparse if its communication matrix has a small
spectral gap close to 0, while a topology is considered dense if its communication matrix has a large spectral gap close to 1.

A.3. Sharpness-aware minimization

Sharpness-aware minimization (SAM) is proposed by Foret et al. (2021) to minimize a perturbed loss function for the purpose
of improving generalization, which is studied concurrently by Wu et al. (2020) and Zheng et al. (2021). Subsequently,
various SAM variants emerge, including adaptive SAM (Kwon et al., 2021), surrogate gap guided SAM (Zhuang et al.,
2022), LookSAM (Liu et al., 2022a), Fisher SAM (Kim et al., 2022b), random SAM (Liu et al., 2022b), sparse SAM (Mi
et al., 2022), variational SAM (Ujváry et al., 2022) and Bayes SAM (Möllenhoff & Khan, 2023).

Definition A.3 (Vanilla SAM (Foret et al., 2021)). The loss function of vanilla SAM is defined as follows:

LSAM(w) = max
∥∈∥p≤ρ

L(w + ϵ).

Foret et al. (2021) propose to use a first-order approximation to simplify the max step:

LSAM(w) ≈ max
∥∈∥p≤ρ

[L(w) + ϵ⊤∇L(w)],

where ϵ∗ = ρ ∇L(w)
∥∇L(w)∥2

is the close-form solution.

Therefore, the gradient update of vanilla SAM becomes

∇LSAM(w) ≈ ∇L(w + ϵ∗) = ∇L(w + ρ
∇L(w)

∥∇L(w)∥2
).
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Definition A.4 (Average-direction SAM (Wen et al., 2023)). Average-direction SAM (AD-SAM) minimizes

LAD-SAM(w) = Eϵ∼N (0,I)[L(w + ϵ⊤
∇L(w)

∥∇L(w)∥2
)].

Average-direction is named because it minimizes an averaged loss in a “basin” around w, rather than the original point-loss.
Actually, the generalization bound of vanilla SAM in Foret et al. (2021) upper bounds the generalization error by the
average-direction sharpness LAD-SAM(w)−L(w). However, Wen et al. (2023) proves that average-direction SAM actually
minimizes L(w) + Tr(H(w)) rather than max∥∈∥p≤ρ L(w + ϵ).

The average-direction SAM that defined in our paper is sightly different from that in (Wen et al., 2023):

Eϵ∼N (0,Ξ(t))[Lw+ϵ −Lw]︸ ︷︷ ︸
average-direction sharpness

.

This kind of AD-SAM depends both on the local landscape and consensus, which is discussed in detail in Subsection 4.1.

A.4. Generalization in large-batch training

Large-batch training is of significant interest for deep learning deployment, which can contribute to a significant speed-up in
training neural networks (Goyal et al., 2017; You et al., 2018; Shallue et al., 2019). Unfortunately, it is widely observed that
in the centralized learning setting, large-batch training often suffers from a drastic generalization degradation, even with
fine-tuned hyperparameters, from both empirical (Chen & Huo, 2016; Keskar et al., 2017; Hoffer et al., 2017; Shallue et al.,
2019; Smith et al., 2020; 2021) and theoretical (He et al., 2019; Li et al., 2021) aspects. An explanation of this phenomenon
is that large-batch training lacks sufficient gradient noise to escape “sharp” minima (Smith et al., 2020).

Mitigating generalization issues in large-batch training. Linear scaling rule (LSR) is a widely used hyper-parameter-free
rule to make up the noise in large-batch deep learning (He et al., 2016a; Goyal et al., 2017; Bottou et al., 2018; Smith et al.,
2020), which states that a fixed learning rate to total batch size ratio allows maintaining generalization performance when the
total batch size increases. Apart from LSR, various optimization techniques have been proposed to reduce the gap, including
learning rate warmup (Smith, 2017), Layer-wise Adaptive Rate Scaling (LARS) (You et al., 2017) and Layer-wise Adaptive
Moments (LAMB) (You et al., 2020). Is worth noticing that decentralization could be a general training technique in a
data-centric setup, which can be combined with these approaches to further improve generalization in large-batch training.

A.5. β-smoothness

Smoothness is a fundamental property of the objective function in optimization, which characterizes the behavior of its
gradient with respect to changes in the parameters (Boyd et al., 2004). In particular, β-smoothness quantifies the rate at
which the objective function varies with respect to changes in the input variables, which is demonstrated as follow:
Definition A.5 (β-smoothness). L is β-smooth if for any z and w, w̃ ∈ Rd,∥∥∇L(w; z)−∇L(w̃; z)

∥∥
2
≤ β∥w − w̃∥2. (A.3)

An objective function that lacks β-smoothness (i.e., non-β-smoothness) can exhibit sudden variations in its gradient with
respect to the input variables, making it difficult to predict the behavior of the function and to design efficient optimization
algorithms. However, β-smoothness is generally difficult to ensure at the beginning and intermediate phases of deep neural
network training (Bassily et al., 2020). It is noteworthy that our theoretical framework does not rely on the β-smoothness
assumption of the objective function L, which renders it suited for different stages of deep neural network training.

A.6. Explanation of tensor product

The tensor product between a third-order tensor T ∈ Rd×d×d and a second-order tensor (matrix) M ∈ Rd×d in the proof of
Theorem 1 is defined as

(T ⊗M)i︸ ︷︷ ︸
the i-th entry

= grandsum(Ti ⊙M),

where Ti ∈ Rd×d is a second-order tensor (matrix), ⊙ denotes the Hadamard product (Davis, 1962), and the grandsum(·)
(Merikoski, 1984) of a second-order tensor (matrix) M̃ satisfies grandsum(M̃) =

∑
i,j M̃ij .
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B. Experimental Setup and Additional Results
This section provides a comprehensive account of the experimental setup, along with supplementary experiments comparing
the generalization performance and the sharpness of the minima of C-SGD and D-SGD. The validation accuracy comparison
of C-SGD and D-SGD includes three scenarios: on multiple communication topologies, without pretraining, and using
layer-wise learning rate tuning.

Dataset and architecture. Decentralized learning is simulated in a dataset-centric setup by uniformly partitioning data
among multiple workers (GPUs) to accelerate training. Vanilla D-SGD with various commonly used topologies (see
Figure 2) and C-SGD are employed to train image classifiers on CIFAR-10 (Krizhevsky et al., 2009) and Tiny ImageNet (Le
& Yang, 2015) with AlexNet (Krizhevsky et al., 2017), ResNet-18 (He et al., 2016b) and DenseNet-121 (Huang et al., 2017).
The ImageNet pretrained models are used as initializations to achieve better final validation performance.

Implementation setting. The number of workers (one GPU as a worker) is set as 16; and the local batch size is set as 8, 64,
and 512 per worker in different cases. For the case of local batch size 64, the initial learning rate is set as 0.1 for ResNet-18
and ResNet-34 and 0.01 for AlexNet, following the setup in (Zhang et al., 2021). The learning rate is divided by 10 when the
model has passed the 2/5 and 4/5 of the total number of iterations (He et al., 2016a). We apply the learning rate warm-up
(Smith, 2017) and the linear scaling law (He et al., 2016a; Goyal et al., 2017) to maintain generalization performance
with increased total batch size. Batch normalization (Ioffe & Szegedy, 2015) is employed in training AlexNet. In order
to understand the effect of decentralization on the flatness of minima and generalization, all other training techniques are
strictly controlled. The training accuracy is almost 100% everywhere. Exponential moving average is employed to smooth
the validation accuracy curves in Figure 1, Figure B.1 and Figure B.2. The code is based on PyTorch (Paszke et al., 2019).

Hardware environment. The experiments are conducted on a computing facility with NVIDIA® Tesla™ V100 16GB GPUs
and Intel® Xeon® Gold 6140 CPU @ 2.30GHz CPUs.
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Figure B.1. The validation accuracy comparison of ResNet-18 trained on CIFAR-10 using C-SGD and D-SGD with various topologies
(see Figure 2). The number of workers (one GPU as a worker) is set as 16; and the local batch size is set as 64, and 512 per worker (1024
and 8196 total batch size).
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Figure B.2. The validation accuracy comparison of ResNet-18 trained on Tiny ImageNet using C-SGD and D-SGD with various topologies
(see Figure 2). The number of workers (one GPU as a worker) is set as 16; and the local batch size is set as 64, and 512 per worker.

Figure B.1 and Figure B.2 show that D-SGD with different topologies consistently outperform C-SGD by a large margin in
large-batch settings, which are consistent with the results shown in Figure 1.
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Additional experiments without pretraining. Additional experiments are conducted to further investigate the impact of
pretraining. All other training settings are kept the same as the previous experiments.
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(a) ResNet-18 (with ImageNet pretrained weights)
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(b) ResNet-18 (training from scratch)

Figure B.3. The validation accuracy comparison of ResNet-18 with (left) and without pretraining (right) trained on CIFAR-10 using
C-SGD and D-SGD. The number of workers (one GPU as a worker) is set as 16; and the local batch size is set as 64, and 512 per worker.

One can observe from Figure B.3 that the gap in validation accuracy between C-SGD and D-SGD is alleviated in the
training-from-scratch settings, which we attributes to the initial optimization difficulties of decentralized training without
pretrained weights (see the discussion in Section 6). The findings align with our insight that the generalization benefits of
decentralization are more pronounced when optimization is not a significant obstacle. We also note that without pretraining,
the accuracy curves of D-SGD are notably smoother than that of C-SGD, which supports the theoretical results in Corollary 2.

Additional experiments on LAMB. Large-batch training is of significant interest for deep learning deployment. However,
linearly scaling the learning rate with the batch size can lead to generalization degradation (Shallue et al., 2019; Smith
et al., 2020; 2021; Li et al., 2021). To address this issue, specialized methods have been developed to carefully tune the
scaling factor between the learning rate and batch size, such as Layer-wise Adaptive Rate Scaling (LARS) (You et al., 2017)
and Layer-wise Adaptive Moments (LAMB) (You et al., 2020). LARS calculates a scaling factor based on the ratio of the
norm of the weight matrix to the norm of the weight gradients for each layer, while LAMB incorporates adaptive moment
estimation. These methods have been shown to improve the convergence rate and generalization performance of large-batch
training. We compare the validation accuracy of centralized LAMB (C-LAMB) and decentralized LAMB (D-LAMB)12.
We follow the baseline learning rate setups (i.e., 0.0035 and 0.01) in You et al. (2020) and conduct experiments with other
different learning rates, which is shown below.
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Figure B.4. The validation accuracy comparison of ResNet-18 trained on CIFAR-10 using centralized LAMB (C-LAMB) and decentralized
LAMB (D-LAMB, ring topology) with different learning rates. The number of workers (one GPU as a worker) is set as 16; and the local
batch size is set as 512 per worker (8196 total batch size). The baseline learning rate setups (i.e., 0.0035 and 0.01) follow You et al. (2020).

The best validation accuracy of C-LAMB training ResNet-18 on CIFAR-10 is 93.06 and 92.03 for 1024 and 8192 total batch
size settings, respectively. The best validation accuracy of D-LAMB training ResNet-18 on CIFAR-10 is 93.32 and 92.95
for 1024 and 8192 total batch size settings, respectively. We find LAMB can mitigate the gap in generalizability between

12C-LAMB refers to the original LAMB and D-LAMB refers to the decentralized version of LAMB where the SGD optimizer in
D-SGD is replaced by LAMB.
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centralized training and decentralized training. However, decentralization still offers sight performance benefit on LAMB
optimizer on multiple learning rates. Is is worth noticing that compared with LARS and LAMB, decentralization incurs
zero additional computation overhead (e.g., no expensive computation of weight norm and gradient norm).

Minima visualizations. The following figures depicts the local loss landscape round minima learned by C-SGD and D-SGD.
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Figure B.5. Minima 2D visualization of ResNet-18 trained on CIFAR-10 using C-SGD and D-SGD (Ring).

We also compare the minima learned by C-SGD and D-SGD with multiple topologies in Figure B.6.
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Figure B.6. Minima 3D visualization of ResNet-18 trained on CIFAR-10 using D-SGD with ring, grid-like and exponential topologies.

From Figure B.5 and Figure B.6, one can observe that (1) the minima of D-SGD with multiple commonly-used topologies
are consistently flatter than those of C-SGD; and that (2) the gap in flatness increases as the total batch size increases. The
findings support the claims made by Theorem 1 and Theorem 3.
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C. Proof
C.1. Propositions on the consensus distance

We will introduce some useful propositions about the consensus distance, as shown below.

Proposition C.1 ((Kong et al., 2021)). Suppose that the averaged gradient norm satisfies 1
m

∑m
j=1 ∥∇L (wj(t))∥2 ≤

(1 + 1−λ
4 ) 1

m

∑m
j=1 ∥∇L (wj(t+1))∥2, then the consensus distance of D-SGD satisfies

Tr(Ξ(t)) =
1

m

m∑
j=1

∥wj(t) −wa(t)∥22

= λ · O

 1
m

∑m
j=1 ∥∇L (wj(t))∥2

(1− λ)
2 +

1
m

∑m
j=1 Eµj(t)∼D

∥∥∇Lµj(t) (wj(t))−∇L (wj(t))
∥∥2
2

1− λ

,

where λ equals 1− spectral gap (see Definition A.2).

Proposition C.2 (Descent condition of Tr(Ξ(t))). If the learning rate η satisfies

η ≤ Tr(Ξ(t))(1− λ)√
6λ

1
2

 1

m

m∑
j=1

∥∇L (wj(t))∥2 + (1− λ) · 1

m

m∑
j=1

Eµj(t)∼D

∥∥∥∇Lµj(t) (wj(t))−∇L (wj(t))
∥∥∥2
2

− 1
2

,

it holds that,

Tr(Ξ(t+1)) ≤ Tr(Ξ(t)).

As the terms in brackets are of order O
(

(1−λ)2

λ · Tr(Ξ(t))
)

according to Proposition C.1, the assumption on η becomes

η ≤ O(Tr(Ξ(t))
1
2 ). The proof follows directly from Lemma C.2 in (Kong et al., 2021).

Proposition C.3. It holds that,

Eϵ∼N (0,Ξ(t))∥ϵ∥32 = (Tr(Ξ(t)))
3
2 = (

1

m

m∑
j=1

∥wj(t) −wa(t)∥22)
3
2

≤ (
1

m

m∑
j=1

∥wj(t) −wa(t)∥32).

The inequality is derived from the generalized mean inequality (Marshall et al., 1979).

C.2. Proof of Theorem 1

Proposition C.4. The gradient diversity in Equation (4) equals to zero in the following cases:

(1) the loss is quadratic, i.e., L = w⊤Hw +Aw + b, where A ∈ Rd×d and b ∈ Rd;
(2) the optimization algorithm is distributed centralized SGD (see Equation (1)).

Proof of Proposition C.4.

On quadratic loss, we have

1

m

m∑
j=1

[∇Lµj(t) (wj(t))−∇Lµj(t) (wa(t))] =
1

m

m∑
j=1

[Hwj(t)+A−Hwa(t)−A] = H
1

m

m∑
j=1

[wj(t)−wa(t)] = 0.
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In distributed centralized SGD, the gradient diversity satisfies

1

m

m∑
j=1

[∇Lµj(t) (wj(t))︸ ︷︷ ︸
=wa(t)

−∇Lµj(t) (wa(t))] = 0.

It can be deduced directly from Proposition C.4 that distributed centralized SGD, which has constant zero gradient diversity,
is equivalent to standard single-worker mini-batch SGD with equivalently large batch size.

Theorem 1 (D-SGD as SAM). Given that the loss L is continuous and has fourth-order partial derivatives. The mean
iterate of the global averaged model wa(t) =

1
m

∑m
j=1 wj(t) of D-SGD can be written as follows:

Eµ(t)[wa(t+1)] = wa(t) − η Eϵ∼N (0,Ξ(t))[∇Lwa(t)+ϵ]︸ ︷︷ ︸
asymptotic descent direction

+O(η Eϵ∼N (0,Ξ(t))∥ϵ∥32 +
η

m

m∑
j=1

∥wj(t) −wa(t)∥32)︸ ︷︷ ︸
higher-order residual terms

,

where Ξ(t) = 1
m

∑m
j=1(wj(t) −wa(t))(wj(t) −wa(t))

T denotes the weight diversity matrix.

Proof of Theorem 1.

(1) Derive the iterate of the averaged model wa(t).

Directly analyzing the dynamics of the diffusion-like decentralized systems where information is gradually spread across the
network is non-trivial. Instead, we focus on wa(t) =

1
m

∑m
j=1 wj(t), the global averaged model of D-SGD, whose update

can be written as follows,

wa(t+1)=wa(t)−η
[
∇Lµ(t)

wa(t)
+

1

m

m∑
j=1

(∇L
µj(t)

wj(t)
−∇L

µj(t)

wa(t)
)︸ ︷︷ ︸

gradient diversity among local workers

]
. (C.1)

Remark. Equation (C.1) shows that decentralization introduces an additional noise, which characterizes the gradient
diversity between the global averaged model wa(t) and the local models wj(t) for j=1, . . . ,m, compared with its centralized
counterpart. Therefore, we note that

analyzing the gradient diversity is the major challenge of decentralized (gradient-based) learning .

Insight. We also note that the gradient diversity equals to zero on quadratic objective L (see Proposition C.4). Therefore,
the quadratic approximation of loss functions L (Zhu et al., 2019b; Ibayashi & Imaizumi, 2021; Liu et al., 2021; 2022c) is
insufficient to characterize how decentralization impacts the training dynamics of D-SGD, especially on neural network loss
landscapes where quadratic approximation may not be accurate even around minima (Ma et al., 2022). To better understand
the dynamics of D-SGD on complex landscapes, it is crucial to consider higher-order geometric information of objective
L. In the following, we approximate the gradient diversity using Taylor expansion, instead of analyzing it on non-convex
non-β-smooth loss L directly, which is highly non-trivial.

(2) Perform Taylor expansion on the gradient diversity. Technically, we perform a second-order Taylor expansion on the
gradient diversity around wa(t):

1

m

m∑
j=1

(∇L
µj(t)

wj(t)
−∇L

µj(t)

wa(t)
) =

1

m

m∑
j=1

H
µj(t)

wa(t)
· (wj(t)−wa(t))+

1

2m

m∑
j=1

T
µj(t)

wa(t)
⊗ [(wj(t)−wa(t))(wj(t)−wa(t))

⊤],

plus residual terms O( 1
m

∑m
j=1 ∥wj(t)−wa(t)∥32). Here H

µj(t)

wa(t)
≜ 1

|µj(t)|
∑|µj(t)|

ζ(t)=1 H(wa(t); zj,ζ(t)) denotes the empirical

Hessian matrix evaluated at wa(t) and T
µj(t)

wa(t)
≜ 1

|µj(t)|
∑|µj(t)|

ζ(t)=1 T (wa(t); zj,ζ(t)) stacks for the empirical third-order partial
derivative tensor at wa(t), where µj(t) and zj,ζ(t) follows the notation in Equation (1).
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As wa(t) and local models wj(t) (j=1, . . . ,m) are only correlated with the super batch before the t-th iteration (see
Equation (2)), taking expectation over µ(t) provides

Eµ(t)

[ 1
m

m∑
j=1

(∇L
µj(t)

wj(t)
−∇L

µj(t)

wa(t)
)
]
= Hwa(t) ·

1

m

m∑
j=1

(wj(t)−wa(t))︸ ︷︷ ︸
=0

+
1

2
Twa(t) ⊗

[ 1
m

m∑
j=1

(wj(t)−wa(t))(wj(t)−wa(t))
⊤],

plus residual terms O( 1
m

∑m
j=1 ∥wj(t)−wa(t)∥32), where Hwa(t)=Eµj(t)[H

µj(t)

wa(t)
] and Twa(t)=Eµj(t)[T

µj(t)

wa(t)
].

The i-th entry of the above equation reads

Eµ(t)

[ 1
m

m∑
j=1

(∂iL
µj(t)

wj(t)
−∂iL

µj(t)

wa(t)
)
]
=
1

2

∑
l,s

∂3
ilsLwa(t)

1

m

m∑
j=1

(wj(t)−wa(t))l(wj(t)−wa(t))s︸ ︷︷ ︸
=∂i

∑
ls ∂2

lsLwa(t)[
1
m

∑m
j=1 (wj(t)−wa(t))l(wj(t)−wa(t))s]

+O(
1

m

m∑
j=1

∥wj(t)−wa(t)∥32),

(C.2)

where (wj(t)−wa(t))l denotes the l-th entry of the vector wj(t)−wa(t). The equality in the brace is due to Clairaut’s theorem
(Rudin et al., 1976). The RHS of the equality is the i-th partial derivative of a quantity we term Hessian-consensus alignment,

Tr(∇2Lwa(t)[
1

m

m∑
j=1

(wj(t)−wa(t))l(wj(t)−wa(t))s]) =
∑
ls

∂2
lsLwa(t)[

1

m

m∑
j=1

(wj(t)−wa(t))l(wj(t)−wa(t))s].

Denote Ξ(t)= 1
m

∑m
j=1(wj(t)−wa(t))(wj(t)−wa(t))

T . The positive definiteness and the non-degeneracy of Ξ(t) guarantees,

Tr(∇2Lwa(t)Ξ(t)) = Tr(∇2Lwa(t)Eϵ∼N (0,Ξ(t))[ϵϵ
T ])

= Eϵ∼N (0,Ξ(t))[ϵ
T∇2Lwa(t)ϵ]

= Eϵ∼N (0,Ξ(t))[2(Lwa(t)+ϵ−Lwa(t))︸ ︷︷ ︸
average-direction sharpness at wa(t)

+O(∥ϵ∥32)], (C.3)

where the last equality is due to a second-order Taylor expansion of Lwa(t)+ϵ around wa(t).

Combining Equation (C.3) and Equation (C.1) gives

Eµ(t)[wa(t+1)] = wa(t) − η∇Eϵ∼N (0,Ξ(t))[Lwa(t)+ϵ]︸ ︷︷ ︸
asymptotic descent direction

+O(η Eϵ∼N (0,Ξ(t))∥ϵ∥32+
η

m

m∑
j=1

∥wj(t)−wa(t)∥32)︸ ︷︷ ︸
higher-order residual terms

,

which completes the proof.

Asymptotic equivalence. Asymptotic equivalence is a fundamental concept in mathematics which describes the equivalent
behavior of functions as their inputs approach a limit point (Erdélyi, 1956; De Bruijn, 1981). Two functions are said to be
asymptotically equivalent if their ratio approaches 1 as the input approaches the limit point. The asymptotic equivalence
allows us to simplify complex functions and identify functions that exhibit the same limiting behavior. In the following, we
define a new asymptotic equivalence called relative asymptotic equivalence, which characterizes the limiting equivalent
behavior of two functions with respect to certain conditions.

Definition C.1 (Conditional asymptotic equivalence). Let f(u1, · · · , um) and g(u1, · · · , um) be two multivariate functions
of u1, · · · , um, where m is an arbitrary positive integer. f(u1, · · · , um) and g(u1, · · · , um) are said to be conditional
asymptotically equivalent with respect to the limiting condition(s) C if and only if

lim
C

f(u1, · · · , um)

g(u1, · · · , um)
= 1. (C.4)
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The conditional asymptotic equivalence is a direct extension of the original asymptotic equivalence, where the limiting
conditions are only on the original variables u1, · · · , um.

According to Definition C.1, η · Eϵ∼N (0,Ξ(t))[∇Lwa(t)+ϵ] and O(η Eϵ∼N (0,Ξ(t))∥ϵ∥32 +
η
m

∑m
j=1 ∥wj(t) − wa(t)∥32) in

Theorem 1 are conditional asymptotically equivalent with respect to the condition (wj(t) −wa(t)) → 0,∀j = 1, . . . ,m, as

lim
(wj(t)−wa(t))→0

∀j=1,...,m

η · Eϵ∼N (0,Ξ(t))[∇Lwa(t)+ϵ] +O(η Eϵ∼N (0,Ξ(t))∥ϵ∥32 +
η
m

∑m
j=1 ∥wj(t) −wa(t)∥32)

Eϵ∼N (0,Ξ(t))[∇Lwa(t)+ϵ]

= lim
(wj(t)−wa(t))→0

∀j=1,...,m

µ1

∑m
j=1 ∥wj(t) −wa(t)∥22 + µ2

∑m
j=1 ∥wj(t) −wa(t)∥32

µ1

∑m
j=1 ∥wj(t) −wa(t)∥22

= 1. (C.5)

The first equality above is obtained by equivalent infinitesimal substitutions, where

µ1 = lim
(wj(t)−wa(t))→0

∀j=1,...,m

Eϵ∼N (0,Ξ(t))[∇Lwa(t)+ϵ]∑m
j=1 ∥wj(t) −wa(t)∥22

∈ R, and (C.6)

µ2 = lim
(wj(t)−wa(t))→0

∀j=1,...,m

O(η Eϵ∼N (0,Ξ(t))∥ϵ∥32 +
η
m

∑m
j=1 ∥wj(t) −wa(t)∥32)∑m

j=1 ∥wj(t) −wa(t)∥32
∈ R (C.7)

depend only on the higher-order geometric information of L and are independent of wj(t) −wa(t),∀j = 1, . . . ,m.

According to Equation (C.5), the expected gradient of D-SGD is asymptotically equivalent to Eϵ∼N (0,Ξ(t))[∇Lwa(t)+ϵ], the
gradient direction of an average-direction SAM. Note that in the limit when wj(t) −wa(t) = 0,∀j = 1, . . . ,m, D-SGD
reduces to the standard SGD, which can be viewed as a specific instance of the average-direction SAM with ϵ = 0.

C.3. Proof of Corollary 2

Corollary 2 (Gradient smoothing effect of D-SGD). Given that vanilla loss function Lw is α-Lipschitz continuous
and the gradient ∇Lw is β-Lipschitz continuous. We conclude that the gradient ∇Lw+ϵ where ϵ ∼ N (0,Ξ(t)) is

min
{√

2α
σmin

, β
}

-Lipschitz continuous, where σmin denotes the smallest eigenvalue of Ξ(t).

Corollary 2 is an extension of Theorem 1 in (Liu et al., 2022b) and (Bisla et al., 2022), respectively. To prove Corollary 2,
we recall Lemma 1 in (Bisla et al., 2022).

Lemma C.5 ((Bisla et al., 2022)). Given that vanilla loss function Lw is α-Lipschitz continuous, ∀w1,w2 ∈ Rd, we have

∥Eϵ∼N (0,Ξ(t)) [∇Lw1+ϵ −∇Lw2+ϵ] ∥2 ≤ α

∫
|p(ϵ−w1)− p(ϵ−w2)|dϵ, (C.8)

where p denotes the density function of N (0,Ξ(t)).

Proof of Corollary 2.

(1) Proving the gradient ∇Lw+ϵ is
√
2α

σmin
-Lipschitz continuous.

We start by writing the RHS of Equation (C.8) as∫
|p(ϵ−w1)− p(ϵ−w2)|dϵ ≤

=

∫
ϵ:∥ϵ−w1∥2≥∥ϵ−w2∥2

[p(ϵ−w1)− p(ϵ−w2)]dϵ+

∫
ϵ:∥ϵ−w1∥2≤∥ϵ−w2∥2

[p(ϵ−w1)− p(ϵ−w2)]dϵ

= 2

∫
ϵ:∥ϵ−x∥2≤∥ϵ−w2∥2

[p(ϵ−w1)− p(ϵ−w2)]dϵ.
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The change of variables ϵ̂ = ϵ−w1 for p(ϵ−w1) and ϵ̂ = ϵ−w2 for p(ϵ−w2) gives∫
ϵ:∥ϵ−x∥2≤∥ϵ−w2∥2

[p(ϵ−w1)− p(ϵ−w2)]dϵ = w

∫
ϵ:∥ϵ̂|≤∥ϵ̂+(x−y)∥

p(ϵ̂)dϵ̂− 2

∫
ϵ:∥ϵ̂∥≥∥ϵ̂−(x−y)∥

p(ϵ̂)dϵ̂

= 2Pϵ̂∼p(∥ϵ̂∥ ≤ ∥ϵ̂+ (w1 −w2)∥)− 2Pϵ̂∼p(∥ϵ̂∥ ≥ ∥ϵ̂− (w1 −w2)∥).

The first part in the RHS of the above equality reads,

Pϵ̂∼p(∥ϵ̂∥ ≤ ∥ϵ̂+ (w1 −w2)∥) = Pϵ̂∼p

(
∥ϵ̂∥2 ≤ ∥ϵ̂+ (w1 −w2)∥2

)
= Pϵ̂∼p

(
2⟨ϵ̂,w1 −w2⟩ ≥ −∥w1 −w2∥2

)
= Pϵ̂∼p

(
2

〈
ϵ̂,

w1 −w2

∥w1 −w2∥

〉
≥ −∥w1 −w2∥

)
.

According to the fact that ∥ w1−w2

∥w1−w2∥2
∥2 = 1, which implies

〈
ϵ̂, w1−w2

∥w1−w2∥2

〉
∼ N

(
0, (w1−w2)

⊤Ξ(t)(w1−w2)
∥w1−w2∥2

2

)
, we obtain,

Pϵ̂∼p(∥ϵ̂∥ ≤ ∥ϵ̂+ (w1 −w2)∥)

=Pϵ̂∼p

(〈
ϵ̂,

w1 −w2

∥w1 −w2∥2

〉
≥ −∥w1 −w2∥2

2

)
=

∫ +∞

− ∥w1−w2∥2
2

1√
2π

∥w1 −w2∥2
(w1 −w2

2)
⊤
Ξ(t)(w1 −w2)

exp

(
− ϵ̂2∥w1 −w2

2∥2
2(w1 −w2)

⊤
Ξ(t)(w1 −w2)

)
dˆ̂ϵ.

By some token, we have,

Pϵ̂∼p(∥ϵ̂∥ ≤ ∥ϵ̂− (w1 −w2)∥)

=

∫ +∞

∥w1−w2∥2
2

1√
2π

∥w1 −w2∥22
(w1 −w2)

⊤
Ξ(t)(w1 −w2)

exp

(
− ϵ̂2∥w1 −w2∥22
2(w1 −w2)

⊤
Ξ(t)(w1 −w2)

)
dˆ̂ϵ.

Combining the two inequalities gives

Pϵ̂∼p(∥ϵ̂∥ ≤ ∥ϵ̂+ (w1 −w2)∥)

=

∫ ∥w1−w2∥2
2

− ∥w1−w2∥2
2

√
2√
π

∥w1 −w2∥22
(w1 −w2)

⊤
Ξ(t)(w1 −w2)

exp

(
− ϵ̂2∥w1 −w2∥22
2(w1 −w2)

⊤
Ξ(t)(w1 −w2)

)
dˆ̂ϵ.

Since exp
(
− ϵ̂2∥w1−w2∥2

2(w1−w2)
⊤Ξ(t)(w1−w2)

)
≤ 1, we can write

Pϵ̂∼p(∥ϵ̂∥ ≤ ∥ϵ̂+ (w1 −w2)∥) ≤
√
2√
π

∥w1 −w2∥22
(w1 −w2)

⊤
Ξ(t)(w1 −w2)

∥w1 −w2∥2.

The goal then becomes upper bounding ∥w1−w2∥2
2

(w1−w2)
⊤Ξ(t)(w1−w2)

with a constant, as shown below:

∥w1 −w2∥22
(w1 −w2)

⊤
Ξ(t)(w1 −w2)

=
∥w1 −w2∥22

Tr
(
(w1 −w2)

⊤
Ξ(t)(w1 −w2)

)
=

∥w1 −w2∥22
Tr
(
Ξ(t)(w1 −w2)(w1 −w2)

⊤
)

≤ ∥w1 −w2∥22
σmin Tr ((w1 −w2)(w1 −w2)

⊤
)
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=
1

σmin
,

where the second equality uses the cyclic property of trace and the inequality is due to Von Neumann’s trace inequality
(Von Neumann, 1937).

Therefore, we can prove that the gradient ∇Lw+ϵ is
√
2α

σmin
-Lipschitz continuous by Lemma C.5.

(2) Proving the gradient ∇Lw+ϵ is β-Lipschitz continuous.

∥Eϵ∼N (0,Ξ(t)) [∇Lw1+ϵ −∇Lw2+ϵ] ∥2 ≤ ∥
∫
(∇Lw1+ϵ −∇Lw2+ϵ) p(ϵ) dϵ∥2

≤
∫

∥∇Lw1+ϵ −∇Lw2+ϵ∥2 p(ϵ) dϵ

≤ β∥w1 −w2∥2
∫

p(ϵ)dϵ

= β∥w1 −w2∥2.

The proof is now complete.

C.4. Proof of Theorem C.6

Theorem C.6. Let P and Q be the prior distribution and the posterior distribution of the model parameters, respectively.
For any γ ∈ R+, with probability at least 1− δ, it holds that

Lwa(t)−L
µ
wa(t)︸ ︷︷ ︸

generalization error

≤ Eϵ∼N (0,Ξ(t))[L
µ

wa(t)+ϵ
−Lµ

wa(t)
]︸ ︷︷ ︸

average-direction sharpness

+Lwa(t)−Eϵ∼N (0,Ξ(t))Lwa(t)+ϵ︸ ︷︷ ︸
test error perturbation

+KL(Q∥P)+
1

γ
ln

(
1

δ

)
+

γ

2N

(C.9)

The test error perturbation is typically non-positive, this means that the addition of Gaussian perturbation ϵ ∼ N (0,Σq)
does not decrease the overall test performance.

To prove Theorem C.6, we briefly introduce the PAC-Bayesian theory. The generalization performance of a model can be
theoretically quantified by upper bounding the generalization gap using techniques such as the VC dimension, information
theory, algorithmic stability, and PAC-Bayes. The PAC-Bayesian framework can be traced back to (McAllester, 1999), as
shown in the following Lemma.

Lemma C.7 ((McAllester, 1999)). Suppose the prior distribution over the parameter space is denoted by P . Let Q
denote the approximate posterior distribution on the parameter space represent the learned model. For any positive real
δ ∈ (0, 1), with probability at least 1− δ, the following inequality holds for all Q:

Lw −Lµ
w︸ ︷︷ ︸

generalization gap

≤

√
KL(Q∥P) + ln 1

δ + lnN + 2

2N − 1
,

where N denotes the total sample size, KL(Q∥P ) is the KL divergence between the distributions Q and P ,

KL(Q∥P) = Ew∼Q

(
ln

Q(w)

P(w)

)
.

Some efforts, e.g., (Fawcett & Green, 2018), have been made to improve the generalization bound to

Lw −Lµ
w︸ ︷︷ ︸

generalization gap

≤ 1

γ
KL(Q∥P) +

1

γ
ln(

1

δ
) +

γ

2N
, (C.10)
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where γ denotes any non-negative real number.

The advantage of PAC-Bayes bounds is it can be optimized to provide useful results (Dziugaite & Roy, 2017) and is related
to flatness (Yang et al., 2019; Orvieto et al., 2022). For more details on the PAC-Bayesian generalization bounds, see
(Alquier, 2021).

Proof of Theorem C.6.

The proof is based on (Tsuzuku et al., 2020).

For the deterministic model wa(t), we can rewrite Inequality (C.10) as follows:

Lwa(t) ≤ Lwa(t) − Eϵ∼N (0,Ξ(t))Lwa(t)+ϵ + Eϵ∼N (0,Ξ(t))L
µ
wa(t)+ϵ +

1

γ
KL(Q∥P) +

1

γ
ln(

1

δ
) +

γ

2N

≤ Lµ
wa(t)

+Lwa(t) − Eϵ∼N (0,Ξ(t))Lwa(t)+ϵ︸ ︷︷ ︸
I1

+Eϵ∼N (0,Ξ(t))L
µ
wa(t)+ϵ −Lµ

wa(t)︸ ︷︷ ︸
I2

+
1

γ
KL(Q∥P)︸ ︷︷ ︸

I3

+
1

γ
ln(

1

δ
) +

γ

2N
,

(C.11)

where the last approximate equality omits the optimization error terms Eϵ∼N (0,Ξ(t))L
µ
wq+ϵ−Eϵ∼N (0,Ξ(t))L

µ
wa(t)+ϵ and

Eϵ∼N (0,Ξ(t))Lwa(t)+ϵ−Eϵ∼N (0,Ξ(t))Lwq+ϵ, according to the assumption that wa(t) is sufficiently close to wq. The proof
is complete.

The first term I1 = Lwa(t)−Eϵ∼N (0,Ξ(t))Lwa(t)+ϵ is typically non-positive, which means that adding Gaussian perturbation
ϵ ∼ N (0,Ξ(t)) does not decrease the test error and the second term is a sharpness measure.
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C.5. Proof of Theorem 3

Theorem 4. Let us denote B = |µ| as the total batch size. With a probability greater than 1−O( B
(N−B)η2 ), D-SGD

implicit minimizes the following objective function:

LD-SGD
w

≈Lµ
w+Tr(Hµ

wΞ(t))+
η

4
Tr((Hµ

w)
2
Ξ(t))︸ ︷︷ ︸

batch size independent sharpness regularizer

+
η

4
∥∇Lµ

w∥22+
κ

N

N∑
j=1

[
∥∇Lj

w−∇Lµ
w∥22+Tr((Hj

w−Hµ
w)

2
Ξ(t))

]
︸ ︷︷ ︸

batch size dependent variance regularizer

+RA+O(η2),

where κ = η
B · N−B

(N−1)
, and RA absorbs all higher-order residuals. The empirical loss and the gradient on the super-batch

µ, denoted by Lµ
w and ∇Lµ

w, respectively, are calculated as averages over the one-sample gradients ∇Lj
w. Similarly,

the empirical Hessian Hµ
w is an averages of Hj

w = H(w; zj).

To prove Theorem 3, we start by showing how the gradient variance and the total batch size affect the training dynamics of
the distributed central SGD.

Lemma C.8. Recall that N denotes the total training sample size and η denotes the learning rate. Let us denote B = |µ|
as the total batch size. With a probability greater than 1−O( B

(N−B)η2 ), distributed centralized SGD (see Equation (1))
implicitly minimizes the following objective function:

LC-SGD
w ≈ Lµ

w︸︷︷︸
original loss

+
η

4
· ∥∇Lµ

w∥22︸ ︷︷ ︸
magnitude of gradient

+
η

B
· N −B

(N − 1)
· 1

N

N∑
j=1

∥∇Lj
w −∇Lµ

w∥22︸ ︷︷ ︸
variance of one-sample gradients

+O(η2), (C.12)

where the empirical loss and gradient on the super-batch µ, denoted by Lµ
w = 1

N

∑N
ζ=1 L(w; zζ) and ∇Lµ

w =
1
N

∑N
ζ=1 ∇L(w; zζ), respectively, are calculated as averages over the one-sample gradients, represented by ∇Lj

w =
∇L(w; zj), at each sample zj .

Remark. Lemma C.8 demonstrates that the “true” loss function which C-SGD (or standard SGD) optimizes is closely
tracked by the original loss plus the magnitude of averaged gradient and a constant times the variance of one-sample
gradients. The last term, i.e., the total variance of one-sample gradient, serves as a measure of generalizability.

Intuition of the generalization advantage of low gradient variance. To intuitively explain the regularization effect of
1
N

∑N
j=1 ∥∇Lj

w −Lµ
w∥22, the empirical variance of gradient, we make a cartoon illustration of the loss function near two

minima: the left one has low gradient variance and the right one has high gradient variance13.

The figures depict loss functions with identical average empirical loss, yet the one-sample losses are more tightly grouped in
the left figure, and dispersed in the right figure. Figure C.1 illustrates that the loss function with lower gradient variance
exhibits a lower sensitivity with respect to the specific sample used for evaluation. Therefore, the minima characterized by
lower gradient variance may exhibit consistency in their performance when evaluated on unseen validation samples, which
guarantees good generalization performance.

Lemma C.8 proves that there exists an implicit regularization effect on the variance of the one-sample gradient in SGD to
improve generalization performance. It is noteworthy that as the total batch size B approaches the total training sample size
N , the regularization term diminishes rapidly, as the ratio N−B

N−1 approaches 0 asymptotically.

Proof of Lemma C.8.

13The illustration is inspired by a blog named “Notes on the origin of implicit regularization in SGD” written by Ferenc Huszár.
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Figure C.1. An illustration of minima with low gradient variance (left) and high gradient variance (right)

We recall the true loss function approximation of single worker SGD proposed by Smith et al. (2021):

LSGD
w = Lµ

w +
η

4
· ∥∇Lµ

w∥22 + η · 1

mB2

m−1∑
i=0

∥
iB+B∑

j=iB+1

∇Lj
w −Lµ

w∥22︸ ︷︷ ︸
variance of mini-batch gradients

. (C.13)

Denote Vj = ∇Lj
w −∇Lµ

w. The total variance of the mini-batch gradient in Equation (C.13) can be written as follows:

1

mB2

m−1∑
i=0

∥
iB+B∑

j=iB+1

Vj∥22 =
1

mB2

m−1∑
i=0

iB+B∑
j1=iB+1

iB+B∑
j1=iB+1

V ⊤
j1 Vj2

=
1

mB2

m−1∑
i=0

iB+B∑
j1=iB+1

(V ⊤
j1 Vj1 +

iB+B∑
j2=iB+1
j2 ̸=j1

V ⊤
j1 Vj2).

The first part of the equation can be trivially written as 1
mB2

∑m−1
i=0

∑iB+B
j1=iB+1 V

⊤
j1
Vj1 = 1

NB

∑N
j1=1 V

⊤
j1
Vj1 . To tackle the

remaining tricky part, we start by showing that

1

mB2

m−1∑
i=0

iB+B∑
j1=iB+1

iB+B∑
j2=iB+1
j2 ̸=j1

V ⊤
j1 Vj2 =

1

B2

B∑
j1=1

B∑
j2=1
j2 ̸=j1

(
1

m

m−1∑
i=0

V ⊤
iB+j1ViB+j2). (C.14)

We then approximate 1
m

∑m−1
i=0 V ⊤

iB+j1
ViB+j2 using its expectation:

1

m

m−1∑
i=0

V ⊤
iB+j1ViB+j2 = Ei[V

⊤
iB+j1ViB+j2 ] +

(
1

m

m−1∑
i=0

V ⊤
iB+j1ViB+j2 − Ei[V

⊤
iB+j1ViB+j2 ]

)
︸ ︷︷ ︸

bias estimator

,

where Ei eliminates the randomness of the sample zi.

According to the Chebyshev’s inequality (Chebyshev, 1874; Marshall & Olkin, 1960), with a probability greater than
1− σ2

(m−1)η2 = 1− Bσ2

(N−B)η2
14, it holds that,

1

m

m−1∑
i=0

V ⊤
iB+j1ViB+j2 = Ei[V

⊤
iB+j1ViB+j2 ] +O(η),

14For sufficient large total sample size N = Ω(B(1 + η−2)), the probability 1− Bσ2

Nη2 ≈ 1.
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where σ2 is the variance of random variables V ⊤
iB+j1

ViB+j2 (i = 1, . . . ,m− 1).

Substituting the sample mean approximation into Equation (C.14), we have that, with a probability greater than 1− Bσ2

(N−B)η2 ,

1

mB2

m−1∑
i=0

iB+B∑
j1=iB+1

iB+B∑
j2=iB+1
j2 ̸=j1

V ⊤
j1 Vj2 =

B(B − 1)

B2

(
Ei[V

⊤
iB+j1ViB+j2(1− δj1,j2)] +O(η)

)

=
B(B − 1)

B2

 1

N(N − 1)

N∑
i1=0

N∑
i2=0
i1 ̸=i2

V ⊤
i1 Vi2 +O(η)

 , (C.15)

where δj1,j2 denotes the Kronecker delta function. The derivation of the second equality is reminiscent of Equation (C.15),
with a sight change of the indices.

Due to the fact that

1

N(N − 1)

N∑
i1=0

N∑
i2=0

V ⊤
i1 Vi2 =

1

N − 1
∥ 1

N

N∑
i1=1

∇Li1
w −∇Lµ

w∥22

=
1

N − 1
∥∇Lµ

w −∇Lµ
w∥22

= 0,

with a probability greater than 1− Bσ2

(N−B)η2 , the total variance of mini-batch gradient in Equation (C.13) reads,

1

mB2

m−1∑
i=0

∥
iB+B∑

j=iB+1

Vj∥22 =
1

NB

N∑
j1=1

V ⊤
j1 Vj1 −

(B − 1)

NB(N − 1)

(
N∑

i1=0

V ⊤
i1 Vi1

)
+O(η)

=
N −B

(N − 1)B
· 1

N

N∑
j=1

∥∇Lj
w −∇Lµ

w∥22︸ ︷︷ ︸
variance of one-sample gradients

+O(η).

According to Proposition C.4, the above results also applies for distributed centralized SGD with equivalently large batch
size B. The proof is now complete.

Theorem 3 is then established based on Lemma C.8.

Proof of Theorem 3.

According to Theorem 1, the gradient of D-SGD can be written as

Eµ[∇LD-SGD
w ] = Eϵ∼N (0,Ξ(t))[∇Lw+ϵ] +R, (C.16)

where the higher-order residual terms are absorbed in R for simplicity15.

The mini-batch form of Equation (C.16) is

ˆ∇Lµ
w = Eϵ∼N (0,Ξ(t))[∇Lµ

w+ϵ] +Rµ.

One can also derive the corresponding gradient evaluated on the j-th sample as

ˆ∇Lj
w = Eϵ∼N (0,Ξ(t))[∇Lj

w+ϵ] +Rj .

15In the following, Rµ and Ri denote the residual terms evaluated on super batch µ and sample j, respectively
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Replacing the original loss, the mini-batch gradient ∇Lµ
w and the j-th sample gradient ∇Lj

w in Equation (C.12) with

Eϵ∼N (0,Ξ(t))[L
µ
w+ϵ], ˆ∇Lµ

w and ˆ∇Lj
w, respectively, we obtain,

LD-SGD
w =Eϵ∼N (0,Ξ(t))[L

µ
w+ϵ] +

η

4
∥Eϵ∼N (0,Ξ(t))[∇Lµ

w+ϵ] +∇Rµ∥22 +Rµ

+
η

B
· N −B

(N − 1)
· 1

N

N∑
j=1

∥Eϵ∼N (0,Ξ(t))[∇Lj
w+ϵ]− Eϵ∼N (0,Ξ(t))[∇Lµ

w+ϵ] +Rj −Rµ∥22 +O(η2)

=Lµ
w +Tr(Hµ

wΞ(t)) +
η

4
∥∇Lµ

w∥22 +
η

4
Tr((Hµ

w)
2
Ξ(t))

+
η

B
· N −B

(N − 1)
· 1

N

N∑
j=1

[
∥∇Lj

w −∇Lµ
w∥22 +Tr((Hj

w −Hµ
w)

2
Ξ(t))

]
+RA +O(η2),

with a probability greater than 1−O( B
(N−B)η2 ), where RA absorb all higher-order residuals. The second equality is due to

first-order Taylor expansions.

The proof is now complete.
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